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Abstract 

     This PhD project is supported by the IFD (Innovation Fund Denmark) through the 

ELMAC (Electronic Systems Manufactured for Climate) and by CELCORR (Centre for 

Electronic Corrosion) via the CreCon (Consortium for Climatically Reliable Electronics) 

at DTU. Humidity caused corrosion failures in electronics is an important contributor to 

the robustness and reliability issues due to several external and inherent factors related to 

electronics. External factors include wide-spread use of electronics today exposing them to 

all climatic conditions, while inherent factors include the multi-material use in electronics, 

miniaturization, and manufacturing process related contributions. Corrosion occurrence in 

electronics under humid conditions is a multi-parameter effects involving many factors. 

Hence, it is important to understand combined effects of various parameters and their 

relative importance in relation to the failure mechanisms. The motivation of this project is 

to investigate the possibility of using predictive analytics approaches based on statistical, 

probabilistic, and ML (machine learning) techniques to forecast PCB failures based on 

multiparameter experimental test data. Such approach not only provide models based on 

multi-parameters effects, but also can determine the relative contribution of different 

factors or multiple factors based on the statistical analysis.  The research in this thesis also 

focused on the investigation of critical factor effects such as pitch distance, contamination 

level, voltage, temperature, humidity, contamination type, and their interactions on SIR 

(Surface Insulation Resistance) reduction and LC (Leakage Current), besides dendrite 

formation and ECM (Electrochemical Migration) on PCB surfaces under various corrosive 

conditions created of a combination of diverse factors/ levels. 

     Chapter 1 provides a background to the climatic reliability of electronics, the motivation 

and research objectives for this PhD project, and the structure of the current PhD thesis. 

Chapter 2 reviews critical factors influencing climatic reliability issues and failures on PCB 

surfaces and literature review. Additionally, PCB testing with common failure mechanisms 

and data analytics focusing on predictive analytics is described. Chapter 3 summarizes the 

materials, experimental works done in this thesis, and predictive methods are employed in 

the PhD project. Chapter 4 contains a summary of appended papers with highlights and 

important outcomes. The research results of investigations and predictions are brought in 

chapters 5-7 from research papers published in peer-reviewed journals or in the form of a 
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draft for publication in the journals. The first paper (chapter 5) investigates the critical 

factors' effect and their interactions to forecast leakage current (LC) and time to failure 

(TTF) due to ECM on PCB surfaces under humidity conditions with a focus on the first 

branch of predictive analytics, i.e., statistical analysis. The second paper (chapter 6) focuses 

on TTF prediction on PCBs under humidity conditions using probabilistic analysis as the 

second branch of predictive analytics. The third paper (chapter 7) concentrates on using 

ML algorithms as the third branch of predictive analytics and creating a comprehensive 

ML investigation for forecasting PCB failure and LC values based on the training input 

conditions mixed from five numerical and one categorical factor of experimental data 

results. Eventually, chapters 9-10 provide the overall discussion, conclusions, and 

suggestions for future works. 

     Overall, the principal results of this PhD project are categorized into three types of 

empirical investigations in three individual papers, each focusing on a separate branch of 

predictive analytics. Based on the advantages and disadvantages of each predictive model, 

one can select all or one of them according to the experimental dataset, which includes; the 

number of factors/levels/conditions, and also responses, limitations, and accuracy of 

prediction models. In addition, the investigations of this project thoroughly explained the 

mathematical simulation of the general leak current behavior, the importance and numerical 

influence of each changeable factor and their interactions on numerical responses (LC and 

TTF values), and the correlation of the responses at various corrosive conditions on PCB 

surfaces. An overall analysis of three approaches are provided in overall discussion section.  
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Resumé 

     Dette PhD projekt er finansieret af (IFD) Innovations fonden Danmark gennem ELMAC 

(electronic systems manufactured for climate) og af CELCORR (Centre for electronic 

corrosion) via CreCon (Consortium for clamatically reliable electronics) på DTU. 

Fugtrelaterede korrosionsfejl i elektronik er en vigtig faktor i robustheds og pålideligheds 

problemer pga. flere eksterne og integrerede faktorer relaterede til elektronik. Eksterne 

faktorer inkluderer den udbredte brug of elektronik hvor de bliver eksponeret til alle slags 

klima tilstande, imens integrerede faktorer inkluderer brugen af multi-materiale i 

elektronik, miniaturisering, og bidrag fra fremstillingsprocesser. Korrosion i elektronik i et 

fugtigt klima er en multiparameter effekt der involverer mange faktorer. Derfor er det 

vigtigt at forstå de kombinerede effekter fra flere parametre og deres relative vigtighed i 

relation til fejlmekanismer. Motivationen bag projektet er at undersøge muligheden for at 

bruge en fremgangsmåde med forudsigende analyser baseret på statistiske, probabilistisk 

og automatisk læringsmetoder til at forudsige PCB fejl baseret på multiparameter 

eksperimentelt testdata. Sådan en fremgangsmåde giver ikke kun modeller baseret på 

multiparametre, men kan også bestemme de relative bidrag fra forskellige faktorer eller 

flere faktorer baseret på statistisk analyse. Forskningen i denne afhandling er også fokuseret 

på at undersøge effekten af kritiske faktorer som pitch afstand, forureningsniveau, 

temperatur, luftfugtighed, spænding, forureningstype og deres interaktioner på SIR 

(overflade insuleringsmodstand) reducering og LC (lækage strøm), udover 

dendritformation og ECM (elektrokemisk migration) på PCB overflader under forskellige 

korrosive betingelser lavet af en kombination af diverse faktorer/niveauer.  

     Kapitel 1 giver en baggrund til den klimaafhængige pålidelighed af elektronik, 

motivationen og strukturen for dette PhD projekt og afhandling. Kapitel 2 kigger på kritiske 

faktorer der påvirker klimarelaterede pålidelighedsproblemer og fejl på PCB overflader, 

samt en litteraturgennemgang. Udover dette, beskrives der PCB tests med gængse 

fejlmekanismer og data analyser med et fokus på forudsigende analyser. Kapitel 3 giver et 

resumé af materialerne, det eksperimentelle arbejde i afhandlingen, og de forudsigende 

metoder brugt i PhD projektet. Kapitel 4 indeholder et resumé af vedlagte artikler med 

fremhævelser og vigtige pointer. Forskningsresultaterne af undersøgelser og forudsigelser 

er bragt i kapitlerne 5-7 fra videnskabelige artikler publiceret i ’peer-reviewed’ tidsskrifter 
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eller i form af kladder til publicering i tidsskrifter. Den første artikel (kapitel 5) undersøger 

de kritiske faktorers effekt og deres interaktioner for at forudsige lækage strøm og tid før 

der opstår fejl pga. ECM på PCB overflader i et fugtigt miljø med fokus på den første del 

af forudsigende analyser, fx statistisk analyse. Den anden artikel (kapitel 6) fokuserer på at 

forudsige tid til fejl på PCB i fugtigt miljø ved brug af probabilistisk analyser som den 

anden del af forudsigende analyser. Den tredje artikel (kapitel 7) er koncentreret omkring 

brug af ML-algoritmer som den tredje del af forudsigende analyser og på at lave en 

generaliseret ML-model til at forudsige PCB fejl og LC værdier baseret på træningsinput 

og betingelser der kombinerer seks kritiske faktorer. Til sidst, bidrager kapitel 9-10 til den 

samlede diskussion, konklusion og forslag til fremtidigt arbejde. 

     Samlet set er hovedresultaterne fra dette projekt kategoriseret i 3 typer af 

eksperimentelle studier i 3 individuelle artikler, der hver fokuserer på en separat del af 

forudsigende analyser. Baseret fordele og ulemper for hver model, kan man udvælge alle 

eller en model afhængigt af det eksperimentelle dataset, hvilket inkluderer; antallet af 

faktorer/niveauer/tilstande med tilhørende reaktioner, begrænsninger og nøjagtigheden af 

de forudsigende modeller. Herudover forklarede undersøgelserne i dette projekt grundigt 

den matematiske simulation af hvordan den generelle strøm opførte sig, vigtigheden af hver 

varierende faktor og den numeriske effekt heraf, samt deres interaktioner ved numeriske 

responser (LC og TTF værdier), og korrelationen mellem reaktionerne ved forskellige 

korrosive miljøer på PCB overflader. En overordnet analyse af tre fremgangsmåder er givet 

i den samlede diskussions sektion. 
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1 Introduction 

1.1 Background 

Nowadays, climatic reliability and humidity robustness of electronic devices has become a 

significant issue for both consumer and industrial electronics due to various reasons. One 

reason for this increased problem is due to the widespread use of electronics. Typical 

examples are the application of power electronics in the electrification of vehicles, 

information technology and renewable energy [1]. Similar situation exists for consumer 

electronics, where the users demand higher portability and device functionalities, while it 

is expected to work in different climatic environments [2], [3].  Demand for smaller devices 

causes an increase in the assembly design density or miniaturization of the printed circuit 

board assemblies (PCBAs) [4], [5]. Printed circuit board (PCB) surface is one of the main 

parts of electronics that gets affected by humidity due to water layer formation under 

transient climate conditions such as temperature and humidity further, due to several 

inherent factors of the PCB surface itself [6], [7]. Among various electronics/electrical 

components in a power electronics system, PCBAs are the weakest link when it comes to 

climatic effects.  

Exposure of a PCBA surface to varying humidity and temperature conditions due to 

exposed climate creates a thin water layer on the PCBA surface, whether the conditions are 

conducive [8], [9]. This water film has a limited conductivity, however dissolution of 

residues on the PCBA surface provide enough conductivity and act as electrolyte medium 

between biased points [10]. The electrical property of the water layer is mainly determined 

by the electrochemical aspects of the microcell formed on the PCB surface when water film 

connects between neighboring biased points such as soldered connections or legs of 

components [10], [11]. The thickness of the water layer formed under humid conditions 

can vary from nanometer to hundredths, depending on the temperature, humidity, 

hygroscopic residues, and PCB parameters [12], [13]. Failure of electronics is specified by 

the interaction of these electrochemical sequences resulting in a parasitic circuit of diverse 

capacities interfering with the electrical aspects of the PCB surface [14], [15]. Therefore, 

understanding and controlling the water film build-up and predicting knowledge on 

subsequent variations in the electrochemical facets leading to a critical level of electrical 

current are vital in controlling the critical conditions related to failures in electronics [5], 
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[16]. Figure 1.1 schematically shows different important factors causing surface insulation 

resistance (SIR) reduction and leakage current (LC) followed by electrochemical migration 

(ECM) and short circuit failure on PCBAs. Among these factors, metals and alloys are part 

of all electrical contacts on PCBA. A potential bias also exists on PCBA, while it is under 

function. Contamination is usually arising from process related residues, and humidity from 

exposure atmosphere.  

 

Figure 1.1 Schematic of critical influencing factors related to PCBA failures, adapted from [17]. 

Overall statistics related to electronics corrosion show a considerable percentage of the cost 

of the annual industrialized countries, around 3% to 4% of gross domestic product (GDP), 

attributed to electronics corrosion. Moreover, this anticipated percentage increases more 

due to the increased demand for electronics in almost all aspects and applications [18]. 

Figure 1.2 (a) illustrates electric components failure distribution, with PCB failure in high 

level of failure risk, and  (b) significant overstresses and factors impacts on electronics 

failure with major effect of climatic conditions i.e. humidity and temperature influences 

[18], [19], [20]. In general, effect of changes in the climate conditions, as well as 

contaminations cause water film formation on PCBs, which is an important aspect for 

reliability of electronic devices [5], [16]. 
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Figure 1.2 (a) Electronic component failure percentage distribution, (b) Percentage of important 

stresses and factors effect on electronic failures, adapted from [18].  

Overstressed mechanisms on electronics refer to the conditions that exceed the strength of 

components and give a short product lifetime. The mechanisms corresponding to climatic 

effects usually cause abrupt electrical failures such as SIR reduction and LC, which is the 

precursor for the ECM and short circuit on PCBAs. Electrical failure mechanisms like LC 

and ECM can occur once environmental conditions with the combination of critical factors 

for instance humidity, temperature, as well as contamination create overstress conditions 

[5]. There are some studies on LC or ECM analysis that does not consider the failure time 

and its dependency between LC and ECM, besides commonly separate parameters are 

analyzed instead of multi-parameter effects and their dependencies [21], [22], [23], [24]. In 

addition, the mechanistic approach and the physics of failure models because of the reason 

that the electrical failure mechanisms process is complex and involves many parameters 

could not reasonably predict the multi-parameter effect and resulting failure. Hence, it is 

substantial to understand the impacts of various factors and their interactions on the PCB 

failure mechanisms. As well as investigation of the possible appropriate predictive models 

to forecast PCB failures based on multi-parameter experimental data results operating 

predictive analytics approaches as the main purpose of this thesis are very influential to 

improve reliability and reduce risk of electronics failure. 

1.2 Motivation and research objectives 

This PhD project is part of CreCon industrial consortium and ELMAC (Electronics 

Manufactured for Climate) project under the center for electronic corrosion (CELCORR) 

on climatically reliable electronics. The highlight of the studies focused in this PhD project 

is related to understanding the interplay between electrochemical mechanisms and the 

failure of PCBs due to changes in electrical functionality under humid conditions and how 
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to use predictive analytics. The detailed investigation of the project is carried out by using 

predictive analytics models based on critical factors and interactions analyses to define 

failure prediction models and risk condition prediction, which can be used for industrial 

applications and customers. The PhD outputs are evaluated the excessive use of predictive 

analytics, which is a type of data analytics framework that uses a mixture of statistical 

analysis, probabilistic approaches, and machine learning algorithms to predict the different 

states of failure processes (SIR reduction and LC to dendrite formation and ECM) based 

on input datasets of various conditions combined of critical factors/ levels from the 

experimental lab results. This PhD these is presented the most suitable approach and 

prediction model based on the input datasets that could provide better perspective of PCB 

reliability and helps to reduce the electronic waste due to failure. Besides, a proper 

understanding of various factors/levels effect in a fitted prediction model could help make 

robust electronics design. The main investigation carried out in this thesis include:  

 Investigation of critical factors' effect and interactions to predict failure on PCB 

surface under humidity. 

 Detailed recognition of current behavior under various conditions as well as 

estimation of the correlation between dependent and independent parameters on 

PCB failure. 

 Implementation of comprehensive predictive analytics, by using a combinations of 

statistical analysis, probabilistic approaches, and machine learning algorithms to 

predict leakage current, time to failure, failure state, and high risky conditions. 

1.3 Scope and structure of the thesis 

Figure 1.3 presents a bird view diagram of this doctoral thesis structured into ten individual 

chapters. Chapter 1 introduces the motivation and research objectives as well as provides 

the scope and structure of the thesis. In chapter 2, relevant literature on climatic reliability 

of electronics, factors influencing climatic reliability, PCB failures due to humidity, testing 

electronics for humidity effects and use of predictive analytics for PCB failure prediction 

with many details are reviewed. In chapter 3, the experimental procedure and design of 

experiments with various conditions combined with different controllable factors/levels 

and predictive analytics approaches utilized in this project are addressed. A summary of 

the main research findings and appended papers are provided in chapter 4. Chapters 5-7 are 

in the form of manuscripts, which provide detailed descriptions and discussions of the 
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experimental results. The PhD thesis is completed with an overall discussion in chapter 8, 

and an overall conclusion in chapter 9, followed by remarks on future works and 

suggestions in chapter 10. 

 

Figure 1.3 Brid view diagram showing structure of the PhD thesis. 
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2 Literature review 

2.1 Climatic reliability of electronics 

Climatic reliability of electronics is attributed to the interaction of external climatic 

conditions and electronic system, which compromise the performance due to 

electrochemical failure modes. Electronic systems depending on the place of use are 

exposed to all climatic conditions. For various applications, they must be highly reliable 

and robust under extreme climatic conditions. Climatic conditions can cause reliability 

issues in electronics resulting in intermittent or permanent failures. Many of the failures are 

due to transient water film formation on PCB surfaces or other assembly components under 

diverse climatic exposure [1]. This trigger electrochemical process between closely spaces 

biased points on the PCBA surface causing leak current (surface insulation resistance drop) 

and finally electric short due to electrochemical migration (ECM) [2]. However, ECM is 

only one corrosion failure mode, while depending on the materials and environmental 

conditions, other corrosion failure modes are possible. Therefore, knowledge-based design 

for climatic reliability prediction and developing preventive strategies are essential [3]. 

Regardless of whether the system is a low or high power, fundamental mechanisms 

operating under climatic conditions have many similarities. Based on prediction methods, 

there are several possibilities for preventive measures using extrinsic strategies like 

changing in the exposed environment using conformal coating as barrier protection [4],  

and the special enclosure to keep the low effect of climatic conditions [5], as well as internal 

strategies like changing PCBA characteristics using different material, design, and 

soldering processes in production [6], [7]. 

The most significant feature connected to the climatic reliability of electronics is corrosion 

failure at PCBAs in contact with various influencing factors from external climatic 

conditions and inherent PCBA characteristics such as factors related to PCBA design, 

PCBA contamination, and PCBA materials. Figure 2.1 as an instance, schematically 

presents the important factors that can affect corrosion failure on electronic devices. The 

detailed description of each factor given in the following sections. 
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Figure 2.1 Schematic of intrinsic and extrinsic effective factors in electronic corrosion, adapted 

from [8]. 

Corrosion failure refer to degradation and destruction of the material’s structure in different 

environment [9], [10]. In electronics, the potential risk of metal corrosion in PCBAs is due 

to existing conductive metals and alloys as the electrical connection like copper traces, 

besides polymer or ceramic corrosion is due to existing of the mixture of polymer/ceramic 

material as the dielectric and resistive properties for preserving the desired electrical 

performance, is important [11]. Corrosion in electronics is an electrochemical process, 

which induced the electrolytic and galvanic corrosion cells formation with a combination 

of many materials, residues from the PCBA manufacturing process and water condensation 

due to deliquescence and climatic conditions on the PCBA surface. Generally, the 

electronic corrosion problems are related to the existence of the combinations of multi-

material comprising in the PCBAs, and the combination of multi-factors that make 

corrosive conditions for PCBA failures in different environments. Hence, from many parts 

in electronics systems that can cause corrosion issues, the focus of this thesis is only on 

PCBA, and especially on PCB surfaces as a substrate because of its important effect (the 

high percentage effect) in the failure distribution of electronic components (Figure 1.2 (a)). 

2.2 Factors influencing climatic reliability of electronics 

In order to improve the reliability of electronics, it requires a detailed understanding of the 

synergetic and interaction effects of various controllable factors. Finding the effect of single 

factor has limited applicability since in application multiple factors together are causing the 

problem, as well as interaction between factors. Moreover, it is crucial for reliability 

assessment to understand the relative importance of factors and their levels to take remedial 
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action at an earlier stage based on selecting the best PCBA material, soldering process, and 

optimizing the design in desired tasks for particular applications and climatic conditions. 

Figure 2.2 presents an overview of two main factors as part of the climatic reliability issues 

focussing on PCBA namely: (i) the external climate conditions and (ii) the substrate for 

corrosion i.e. PCBA characteristics. Climatic conditions from the testing point of view 

corresponds to various controllable factors such as humidity and temperature that can be 

set inside the climatic chamber for different tests. Besides, uncontrollable factors such as 

environmental radiation, environmental electric/electromagnetic fields, and air pressure on 

PCBAs are not easy to control or change in usual laboratories for investigating their effect. 

The PCBA characteristics also have different aspects regarding the cleanliness due to 

various contaminations, design of electrical components and overall assembling on PCB, 

and type of materials that are used on PCBs substrate, surface, connectors, and assembles 

components. More explanations of each category and the influencing factors are given in 

the following subsections of 2.2. 

 

Figure 2.2 Overall categories and factors that affect climate reliability issues of electronics. 



Literature review 

12 

 

 External climatic conditions 

The exposure of PCBAs to external climatic conditions consist of several factors for 

instance humidity, temperature, pressure, environmental radiation, and 

electrical/electromagnetic fields. Among these, humidity and temperature are the key 

factors leading to the water film formation on the PCBA surface that can lead to corrosion 

failure by acting as electrolyte layer for electrochemical processes. Fluctuation in the 

humidity and temperature is another factor, and the parameter connected to this is the dew 

point temperature, which represents the temperature to which a surface needs to be cooled 

in order to get condensation. DP temperature is a function of absolute humidity and 

temperature. However, water film on a PCBA surface can also form under constant 

humidity conditions due to the hygroscopic nature of the PCBA surface. This aspect will 

be discussed later.  

Related to the humidity in the air, presence of diffused water vapor in the air is described 

in two ways, namely (i) Absolute humidity (AH), which is defined as the water vapor 

density in the air expressed as g/m³, and (ii) Relative humidity (RH) described as the ratio 

(percentage) of the partial pressure of the water vapor to the saturation vapor pressure and 

expressed as a percentage [12], [13]. AH is a function of temperature, while RH value is 

independent of temperature as it is expressed as a ratio to saturation vapour pressure. 

However, same RH value at two temperatures does not mean that the absolute humidity 

level in the air is same. Two places with same RH level with different temperatures will 

have higher AH for the place with higher temperature. RH can be easily measured using a 

sensor and it is usually used commonly for engineering applications as it is expressed as a 

percentage to saturation level. The changes of water vapor in the air to the state of liquid 

on the PCB surface are referred to as condensation phenomena [14]. The temperature at 

which condensation transpires and differs with the RH is named the dew point. Figure 2.3 

illustrates the temperature, RH, and dew point relationship based on the Magnus formula 

to create condensation [15]. The Magnus approximation is described by equation [16], [17]: 

𝑇𝐷𝑃 =  
𝐴[ln(𝑅𝐻

100⁄ ) + (𝐵. 𝑇
𝐴 + 𝑇⁄ )]

𝐵 − ln(𝑅𝐻
100⁄ ) − (𝐵. 𝑇

𝐴 + 𝑇⁄ )
 

Where 𝑇𝐷𝑃 is the DP temperature of the air (°C), T is the temperature (°C), RH is relative 

humidity (%), which only these two parameters (T and RH) of the air have to be measured, 
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and A and B are constant parameters with the values of 243.04, and 17.625, respectively 

[17], [18]. RH and T fluctuations are different throughout the day (different times) and for 

different locations. In the same RH condition for the condensation on a PCBA surface, the 

difference between ambient temperature (T) and dew point temperature (𝑇𝐷𝑃) is required. 

The temperature difference needed for condensation is small at high levels of humidity. For 

instance, at an ambient of 20°C and 60%RH, the dew point is around 12°C; however, when 

there is 90%RH, the dew point is around 18°C. 

 

Figure 2.3 Dew point versus temperature relationship for different levels of RH, adapted from [15]. 

 

 Important PCBA characteristics for humidity effects 

As PCBs are the most important part of all electronic devices as it is the connecting 

substrate with conductive tracks, which also act as mechanical support for the whole 

assembly.  When components are placed on the PCB and soldered, the final assembly is 

called PCBA [19]. The electric components are placed using different soldering process for 

instance wave soldering, reflow soldering and hand soldering, which have explained more 

in the next section [20]. Soldering process is important for the climatic reliability because 

of the application of no-clean flux systems to activate the soldering surfaces, while the flux 

leaves tiny levels of hygroscopic residues contributing to the humidity related corrosion 

issues [20]. Level and placement of flux residue left depends on the automated soldering 

process and PCBA design aspects, while the type of flux residue depends on the chemistry 

of the flux used. Some no-clean flux chemistries are more prone to humidity absorption on 
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PCBA surface compared to others due to their hygroscopic behavior. Therefore, these 

factors could influence the corrosion failure and act in three ways; (i) chemistry and nature 

of contamination (ii) changing the PCBA design and thermal characteristics while 

soldering, and (iii) changing the humidity absorption behavior. Figure 2.4 depicts the 

factors influencing PCBAs characteristics and their robustness properties under various 

climatic conditions, which have incrementally improved for specific systems in enhancing 

climatic reliability of electronics point of view.     

 

Figure 2.4 Various factors related to PCBA and process important for humidity issues. 

 

Following sections discuss on how some of the factors above namely the contamination, 

material and PCBA design including bias level etc. contribute to the humidity related 

corrosion issues.  

2.2.2.1 Contamination on PCBA 

The creation of the water film and possible corrosion creation is specified using the PCBA 

cleanliness due to their hygroscopic nature assisting water layer formation [21], [22]. The 

contamination typically found inside the electronic devices originates either from the 

PCBA manufacturing process, handling during manufacturing and service life, and the 

environment [23], [24], [25]. However, process related contamination inherent on the 

PCBA surface is most important as in most cases external contamination entry to the PCBA 

surface is avoided by proper packaging. Figure 2.5 shows more details of the origination 

of residual contaminants on PCBAs. 
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Figure 2.5 Different sources of contamination on PCBA surface. 

 

Generally, the electronic devices with PCBAs are well packaged with a properly designed 

enclosure to avoid any aerosols entering the device. Moreover, chloride-related chemicals 

are totally avoided in the production process. Therefore, major hygroscopic residues 

causing problems on the PCB surface are arising from the solder flux residue resulting from 

the manufacturing process. For most applications today, no-clean solder flux technology 

conveys no need for cleaning after the soldering process with the thinking that a minimal 

amount of residues is left [20]. The certain amounts of residues remaining on a PCBA 

surface due to its hygroscopic nature attract humidity from the surrounding environment 

and build up water layer, act as corrosion accelerated factors, and contribute to deterioration 

in the electronic device's functionality and increase of LC [26], [27]. Solder flux systems 

depend on the soldering process, is generally divided into three kinds; wave soldering, a 

liquid type of flux is utilized; reflow soldering, a paste type of flux is utilized; hand 

soldering, a wire type of flux is used [20]. Figure 2.6 displays the main steps of the reflow 

soldering process, which uses a solder paste, and electrical components are directly 

mounted on the pasts, upon the surface of PCBA. For this process, paste is first printed on 

the PCB pad followed by mounting of components and then passing through the oven for 

the soldering process. Hence, the flux residue in this case is localized to below the 

components.  
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Figure 2.6 Main steps of the reflow soldering process, adapted from [28]. 

 

Most of the no-clean flux systems today are based on weak organic acid (WOA) activators. 

Typically, these acids can be adipic, succinic, glutaric, or malic acids to name a few. Similar 

to sodium chloride, these acids are hygroscopic, and deliquescent relative humidity (DRH) 

and efflorescence relative humidity (ERH) levels are different for different activators [29]. 

Typical flux chemistry also contains other ingredients such as solvents and resins; however, 

they have minimal effect in relation to humidity issues. The soldering process, especially 

wave soldering because of the use of liquid flux by spraying process introduces ionic 

residues on the PCBA surface during the manufacturing process, which along with other 

factors, affects the corrosion failures related to humidity on the PCB surface [29].   

Wave soldering processing is the most common method to assemble electronics 

components onto PCBs [30]. It is mostly used for through-hole (TH) components assembly, 

but can also be used for surface mounting on PCBs [31]. Figure 2.7 illustrates the main 

process of the wave soldering, including; component mounting on  PCB, PCB flux coating, 

warm-up and passing through a molten solder wave, soldered TH component, and cool-

down steps, respectively.  

 

Figure 2.7 Main steps of the wave soldering process, adapted from [28]. 

 

From liquid solder flux system (PCB fluxing) for wave soldering, activators like weak 

organic acids (WOAs) with a high hygroscopic nature act as an etching agent for the oxide 

layer from the metallic surfaces and allow the molten solder to rigid stick to the metal 

connections [32]. Figure 2.8 displays the details of the liquid solder flux system with 

different components and why there are, include in the flux chemistry.   
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Figure 2.8 Liquid solder flux system for wave soldering. 

 

Table 2.1 illustrate the most commonly found weak organic acid in solder flux systems, 

with different DRH and ERH levels depending on the chemical structure and properties 

[33], [34], [35], [36], [37]. Most of the contaminations on PCBs due to having hygroscopic 

properties are also extremely soluble in water, which can uptake humidity and enrich the 

formation of a layer with some electrical conductivity on the on the PCB surfaces, causing 

different failures. Besides, both WOAs solubility and WOAs strength have defined the 

conductivity of the water layer that has made on the PCBA, which the high conductivity 

has shown a high LC value and a high increase in the corrosion failure on PCBAs [29]. The 

WOAs solubility has specified the amount of the solvability of the residue at a temperature, 

and WOAs strength determines the dissociability of the acids (determined by the pKa 

values). 
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Table 2.1 Most usual WOAs are found in soldering flux systems with selected properties [14], [20]. 

 Adipic 

acid 

Glutaric 

acid 

Succinic 

acid 

Suberic 

acid 

DL-

Malic 

acid 

Palmitic 

acid 

Chemical 

structure     
  

Mol. Formula C6H10O4 C5H8O4 C4H6O4 C8H14O4 C4H6O5 C16H32O2 

Melting point 151-154°C 95- 98°C 185- 

189°C 

140- 

144°C 

130- 

132°C 

61- 63°C 

Boiling point 337°C 304°C 235°C 345.5°C 150°C 352°C 

Solubility in water 

at 25°C [g/l] 

24 1400 83.5 2.43 1440 0.007 

RH for 

deliquescence at 

25°C 

~ 99% ~ 87% ~ 98% ~ 99.9% ~ 78%  

Three factors connected to the ionic contamination on the PCBA in relation to the humidity 

effects are (Figure 2.9) (i)  type of contamination or chemistry of contamination due to the 

difference in DRH, ERH, and pKa values, (ii) amount of contamination (contamination 

level) on the PCBA surface, and (iii) position of the contamination on a PCB surface for 

example whether it is present near or underneath a sensitive component (this aspect is more 

dependent on PCBA design as discussed below).  

 

Figure 2.9 Factors contributing to the detrimental effect of the contamination on PCB surfaces. 

2.2.2.2  Importance of PCBA design on humidity effects 

The design of PCBAs goes through two main steps namely base PCB manufacturing with 

required layout (places for component mounting and connecting tracks) followed by 

assembling of component and soldering. Base PCB surface finish can be of different types 

depending on the requirements of the PCBA for e.g. ENIG type, HASL (Hot Air Solder 

Leveling) type, Immersion silver, Immersion Tin etc. Surface finish means the coating on 
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the external exposed tracks of the PCB where the components will be mounted and 

soldered. Surface finish used in this thesis for testing is HASL (See next section).  In PCB 

manufacturing, the layout, surface finish, and definition of positions for all components and 

tracks for linking components together are considered. Then for the mounting assemblies 

and soldering process, the logical scheme, which defines the electronic components with 

different properties and their interconnections with proper application potential bias, is 

deliberated [38].  Spacing between the opposite potential bias of electrodes on a component 

and between two different components, as well as the range of applying a potential bias 

between two electrodes, are very important features in the PCBA design [22]. Other 

important factors influencing PCBA design are component placement/orientation, the size 

of the components, and gap sizes where residues can trap as well as water trap during 

condensation [8]. Besides, heat distribution on the PCBA surface is another important 

factor in PCBA design. Based on it, if there is any component that provides heat, then the 

hot part is less prone to humidity effects [8], [39]. It means the soldering process could 

depend on the placement of the heat-absorbing and heavy components, and it could affect 

the flux decomposition causing a heterogeneous distribution of the contamination on the 

PCBA [20]. For instance, the WOAs in the solder flux are more probable for residue 

decomposition depending on the thermal treatment whether the PCBA temperature attain a 

specified level, which interaction with humidity determines their effect on the PCBA 

corrosion failure [20].   

 The pitch distance is a significant issue due to the various demands of users for the 

portability of electronic devices, as well as their use of them in different climatic 

environments [40]. This issue causes an increase in the miniaturization or assembly design 

density of the PCBAs [29], [41]. The compact device has caused the space reduction of 

different components and between the various components on the PCB surfaces. This 

distance decreasing causes increasing the electric field, in which the electric field strength 

has a direct relationship with potential bias (voltage) and reverse relationship with the 

distance between conducting lines on each electrical component or between them (E=V/d) 

[42]. Figure 2.10 displays the pitch distance on a component and between two components 

under applying voltage and the creation of an electric field. 
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Figure 2.10 schematic of pitch distance, applying voltage, and creation of electric field on PCBAs. 

The voltage is one of the critical factors for making failures on PCBAs [29]. Applied the 

voltage between two electrodes causes the dissolution of anodic metal ions in the 

conductive water form [29]. The conductive water film has been created due to climatic 

conditions and contamination. The dissolution of anodic metal ions of metal connections 

on the PCBA has migrated and then deposited at the cathode. Afterward, the metallic 

filaments of dendritic shape under the influence of the electric field due to the applied 

voltage will have made. It means the initial condition to create the permanent failure mode 

(short circuit) on PCBAs have made. 

2.2.2.3 PCBA materials  

PCBAs use a mixture of materials as substrates and components. Material selection and 

varying qualities depend on the requirements of the application, such as performance for 

special environment applications to warrant the survivability of mechanical/ 

electrical/thermal stresses. Moreover, to follow governmental regulatory prerequisites such 

as the European Union’s restriction of hazardous substances (RoHS), the use of materials 

containing any metals and restricted chemicals is forbidden [43]. The electrical components 

or PCB assemblies for diverse applications depend on electrical resistance and 

conductance, often using metals, polymers, and ceramics [44], [45], [46].   

The PCBs commonly consists of three basic layers, from top to bottom, including solder 

mask, metal connector (copper layer), and substrate (FR-4) [47]. There are three most 

important types of materials that use for the PCB substrate fabrication, including; FR-4, 

Polytetrafluoroethylene (PTFE), and metal [48], [49]. The metal materials like aluminum 

provide suitable thermal performance, mechanical durability, and much longer product life 

for PCBs [50]. PTFE (Teflon) PCBs are a kind of flexible and lightweight plastic material 
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with very low resistance that is used for high-speed and high-frequency applications [51]. 

FR-4 is the most commonly used material in PCBs, having good strength-to-weight ratios 

and high tensile strength [52], [53]. Generally, FR-4, by having glass fiber woven in an 

epoxy resin, has good thermal and mechanical characteristics for use in most electronic 

applications [54], [55], [56]. FR is a common term for fire retardant, and 4 represents 

laminated epoxy composite, which can cover a large spectrum of materials [57], [58]. Table 

2.2 shows the constituent, major functions, and instances of FR-4 materials [14], [59]. 

 

Table 2.2 Usual constituent, function, and example of FR-4 materials, adapted from [14], [59]. 

 

Copper trace or PCB track refers to a copper conductor as the common metal connection 

on the PCBs, which conducts electric current through connected components with little 

resistance [60], [61]. Solder mask or solder resist is a robust and permanent coating that 

protects copper traces from corrosion and the conductive bridging between them on PCBs 

[62], [63]. Usually, to avoid copper trace oxidization and deterioration, the surface finish 

makes a crucial interface between the PCB and the component assembly. The surface 

finishes have two vital purposes, to preserve the exposed copper circuitry and to prepare a 

solderable surface before the electrical components to the PCB are assembled [64], [65], 

[66]. The chemical surface plating methods such as immersion tin (ISn), immersion silver 

(IAg), electroless nickel immersion gold (ENIG), besides electroless nickel electroless 

palladium immersion gold (ENEPIG) are commonly used by a low thickness layer on 

copper traces [66], [67], [68], [69]. Figure 2.11 illustrates the different layers with the 

electroless process and immersed materials, which are used for common PCB surface 

finishes [70], [71], [72].  
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Figure 2.11 Comparisons of different widely used PCB surface finishes. 

The hot air solder leveling (HASL) surface finish as the most popular cost-effective surface 

finish, also uses Tin (Sn); however, it is different from the ISn surface finish. HASL surface 

is produced by dipping the PCB with base copper tracks into a molten SAC (Sn-Ag-Cu) 

solder alloy bath, followed by removing excessive material using an air knife [73], [74]. 

Figure 2.12 displays a schematic of a PCB HASL surface finished production in vertical 

process. HASL is usually used in the Tin alloy, and it does not need to be immersed and 

tinned, besides the PCB surface that is covered with Tin alloy, scraped by hot air for 

leveling the Tin alloy surface [75], [76], [77]. Table 2.3 displays the comparison of some 

influential features like solderability and popularity from the applications point of view, as 

well as cost and shelf life from a properties point of view for common PCB surface finishes 

[72], [78], [79]. 

 

Figure 2.12 Schematic of in vertical HASL procedure. 

 

Table 2.3 Comparison of common PCB surface finish in some influential features. 

 HASL ISn IAg ENIG ENEPIG 

Solderability Very Good Good Excellent Good Good 

Fabrication cost Low Medium Medium High High 

Shelf life Long Low Medium Long Long 

Popularity High Low Medium Medium Medium 
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2.3 PCBA failures due to climatic conditions 

PCBA failure under climatic conditions is an electrochemical corrosion mechanism 

occurring due to the PCBA characteristics and thin water layer formation on the PCB 

surface [80]. The combination of critical factors from all PCBA contamination, design, and 

materials aspects together with exposure to various climatic conditions generate 

electrochemical failures process on PCBAs. The thin water film formation is caused by 

flux residue on PCBAs, and climatic conditions due to deliquescence [81], [82]. 

Deliquescence is defined as a tendency of a transformation of the solid phase to a liquid 

solution phase under proper climatic conditions. It depends upon the solid properties 

(chemical potential for the interaction with surrounding humidity) and the atmospheric 

temperature [82], [83]. The deliquescence relative humidity of different contamination on 

PCBAs like WOAs that are commonly used in no-clean flux activators is diverse at various 

temperatures [82].  

The existence of a high level of humidity and climatic conditions together with other PCBA 

characteristics and intrinsic factors of electronics creates in many failure modes related to 

corrosion [8]. The main failure modes on PCBA includes: reduction in SIR and LC, ECM, 

conductive anodic filament (CAF), galvanic corrosion, fretting corrosion, creep corrosion, 

gaseous corrosion, and polymer degradation due to moisture absorption [84], [8]. Since this 

thesis is focused on reduction in SIR and LC, and dendrite formation and ECM failure 

modes, more information have provided on these. Overall, these failure modes contained 

electrochemical mechanisms due to the corrosion of the involved different metallic 

materials and water layer as electrolyte. The electrochemical process is caused by the water 

film connecting between metallic points, while the soldering process related contamination 

will dissolve into the water film providing it good electrolyte properties. The two failure 

modes focused in thesis are independent, and the LC is the precursor for the ECM, although 

it is not a necessary condition that in each case LC leads to ECM. LC is produced due to 

the electrochemical process, which also involves metal dissolution. Dissolved metals, then 

migrate to the cathode and leave in the shape of the dendrite to create a short circuit [22]. 

Nevertheless, from the application point of view both steps in the failure mode is important 

as LC itself could influence the functionality of the electronics depending on its sensitivity, 

and ECM leads to irreversible failure mode. 
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 Surface insolation resistance reduction and LC 

SIR refers to the electrical resistance and material properties between conductive 

electrodes, which are separated by dielectric materials [85], [86]. On a PCBA surface 

components are interconnected and while working with a potential bias. The glass epoxy 

laminate substrate provides required electrical resistance between the conduction lines as 

well dielectric properties. However, when the water film forms, current can also pass 

through the water film due to the electrochemical processes at the connected electrode. 

Therefore, SIR reduction occurs proportional to the increase of LC, which is usually an 

initial failure that results from the presence of ionic hygroscopic contamination and water 

film formation due to climatic conditions (temperature and humidity changes) [86]. Leak 

current through the water film act as stray current for the functioning of the PCBA 

influencing its overall functionality or functionality of a particular component. Decrease of 

SIR and increase of LC can grow due to increasing water film conductivity and applied 

high voltage between two small opposite electrodes (anode and cathode).  

Leak current on a PCBA can be described as a current passage between conducting points. 

Figure 2.13 schematically displays three pathways for leak current between two conducting 

points, which are included; (I1)  current through the PCB laminate, (I2) current on the PCB 

surface, and (I3) current through the adsorbed water layer. The I1 and I2 are typically low 

(below nA, as well as below the SIR level of G Ω) and almost constant based on PCBA 

design and material properties [8]. The I3 (LC) is based on climatic conditions and 

contributing surface contamination (especially hygroscopic ionic residues from the wave 

solder process), which results in a water layer buildup, causing a significant increase and 

subsequently changing the functionality and failure of the electronics. 

 

Figure 2.13 Different pathways for leak current on a PCBA, (I1) current through the laminate, (I2) 

current on the PCB surface, and (I3) current through the electrolyte (water layer on the PCB surface), 

adapted from [8]. 
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 Electrochemical migration and short circuit 

ECM is a continuation of the LC. In another word, LC is the forerunner for ECM, although 

it is not a necessary condition that LC leads to ECM in each case. ECM, as one of the most 

common failures in PCBAs under various climatic conditions, refers to migrate of metal 

ions through the conductive electrolyte (thin water layer formation on the PCB surface) 

under the effect of the electric field due to applying the potential bias (voltage) between 

two opposite point (anode and cathode) [87].  

In the high electric field, the dissolution of metal ions like Sn from the anode passes through 

the created bridge of conductive water layer and makes the deposition of metal ions to the 

cathode side, causing dendrite growth from the cathode to the anode [88]. If the dendritic 

filament greaten enough to minimize the distance between cathode and anode in the surface 

conductive electrolyte, and finally making an enduring conductor bridging, the short circuit 

happens as the most significant failure mode in electronic devices [22], [29]. Figure 2.14 

presents the dendrite formation mechanism under applying voltage and conductive water 

layer [89], [90].  

 

Figure 2.14 Dendrite formation mechanism, adapted from [14]. 

 

In general, based on three steps, the ECM grows from the cathode to the anode. In the first 

step, the water layer has electrolyzed at the anode electrode, and metal ions have dissolved 

with high level of contamination [91]. Secondly, the metal ions have diffuse (depending on 

the effective electrical field strength) to the cathode through conductive water film. 

Eventually, the hydroxide ions have diminished to metal at the cathode, which relating to 

the type and the level of contamination induced, LCs can emerge on the surface of PCB 
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[92]. Subsequently, their deposition at the cathode then starts the creation of metallic 

filaments of dendritic shape under potential bias has applied. On the contrary, the ECM 

created will not form permanent metallic links between adjacent conductors, but if the 

dendritic filament greaten adequate to minimize distance between cathode and anode in the 

surface conductive electrolyte, finally, a stable conductor bridging, in better words the short 

circuit will happen as the most important failure mode in electronic devices [22], [91]. This 

will lead to malfunctions performance of electronic components and systems owing to high 

level of LCs and electric short circuits [92], [93], [94], [95], [96], [97]. Figure 2.15 presents 

an example of ECM occurrence on a SIR PCB surface. The climatic conditions (humidity 

and temperature), as well as contamination types and levels, material surface finishes, the 

distance of the electrodes, and potential voltages from PCBA characteristics, are the main 

part of critical factors which influence the SIR reduction, consequence on ECM, and short 

circuit on PCBAs. 

 

Figure 2.15 Example of ECM and dendrite formation on PCBA; (a) Optical microscope image of 

dendrite formation on SIR PCB with IAg surface finish under 100 µg/cm2 Glutaric acid, 10V, 

95%RH, 40C, and at 300um pitch distance, (b) Optical microscope image of dendrite formation on 

0805 SMT capacitor after droplet test under 2 µg/cm2 Glutaric acid, 10V, 25C, and 1000um pitch 

distance, (c) Optical microscope image of dendrite formation on 0603 SMT capacitor after droplet 

test under 1 µg/cm2 Glutaric acid, 10V, 25C, and 1000um pitch distance, (d) Optical microscope 

image of dendrite formation on SIR PCB with HASL surface finish under 100 µg/cm2 Adipic acid, 

5V, 98%RH, 50C, and at 300um pitch distance. 
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2.4 Testing PCBA under humidity and current measurement 

SIR testing is a practical test to reflect PCBA performance to assess lifetime, robustness, 

capability, and reliability based on IPC standards [98] for evaluating electronic assemblies 

quality; since attaining actual PCBA geometries is mostly tough to experiment, simulate, 

and predict [99], [14]. SIR DC testing is the most usual test designed for material quality, 

service life estimate, besides assessing various factors on the SIR values since it is a 

simplified manifestation of PCBAs without geometries [100], [101], [102]. As a test 

substrate, PCBs with interdigitated pattern (called SIR PCBs) having different pitch 

distances are used. Pitch distances used usually corresponds to distances found on PCBA 

surfaces. SIR PCBs are commonly made on the FR-4 laminate, similar to a comb pattern, 

having two conductors separated by a dielectric at different pitch distances. Testing is 

carried out under constant potential conditions, while the output can be measured either as 

resistance change (SIR change) or as LC [103], [104]. Figure 2.16 displays two commonly 

used IPC standard SIR test PCBs with different pitch distances. 

 

Figure 2.16 IPC standardized SIR test PCB; (a) IPC-B-24 [99] , (b) IPC-B-25A [81]. 

 

Current measurement as a main indicator to define different outputs like LC, Time to failure 

(TTF) due to ECM, and failure status under exposure to various climactic conditions is 

often employed in the testing of PCBA [105], [106], [107]. Chronoamperometry (CA) is a 

DC technique in the potentiostat that can measure the leak current to the pA level on the 

PCB surface under various climatic conditions with the low DC voltage in a range of 0 to 
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10 V [108], [109]. Figure 2.17 presents a general current measurement and interdependency 

states of current behaviors to create the failure modes (LC and ECM) on the PCB surface 

that show three states corresponding to the corrosive environment, namely: stable part 

(getting LC value), transient part (getting TTF value due to ECM), and unstable part 

(getting failure status information) after the transient [22]. 

 

Figure 2.17 General current behavior from DC current measurement testing at three states on SIR 

PCBs, adapted from [22]. 

The early state of the measured current at each condition, below the current that abruptly 

raised, is considered as stable part. In this part, an average of current is taken into account 

as the LC value [22]. This part is created owing to the surface electrochemical process of 

forming the water layer and the potential biased connection between anode and cathode  

[22]. Following the continuation of electrochemical process, which is called transient part, 

the dissolved metal ions from the positively biased electrode (anode) gradually move to the 

negative one (cathode) and deposit in the shape of the dendrite, electrically bridging the 

two electrodes [29]. Corresponding to this, the behavior of current demonstrates an abrupt 

raise (jump) at the beginning of the second part, which the beginning of the second part 

taken into account as the start of the failure process due to ECM and is called TTF. The 

initial time and duration for this part can be determined by the conditions' aggressiveness 

combined with various factors and levels. With growing the dendrite filament and 

decreasing of the distance between two conductive electrodes on the PCB surface, the 
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stable conductor bridging has been made with a high current region [22]. Normally, the 

leakage current value bigger than the ECM threshold shows the short circuit created by an 

enduring dendrite in the unstable part [29]. This demonstrates a hierarchical failure 

mechanism, which causing a short circuit with interdependencies between the failures 

processes in current measurement testing [22]. 

 Design of Experiment Methodology 

Design of experiment (DOE) is a regular platform for doing studies using statistical 

procedures [110]. DOE approach, using a systematic design, attempted to address the one 

factor at a time (OFAT) method’s drawbacks and investigate the significant factors and 

their interactions with fewer experiments [111], [112]. Moreover, the DOE approach was 

adopted to characterize the impact and interaction of the factors as well as help to formulate 

the relationship of independent variables with dependent variables (response), which aids 

in developing a predictive statistical model [113].  

There are four key terminology and technical tools at DOE, which include interaction, 

randomization, blocking, and replication [114], [115], [116]. Interaction is defined as the 

behavior of two or more factors when they are together, and the interaction plot is most 

often used to visualize probable interactions between two or more factors during the DOE. 

Randomization is used to minimize potential uncontrollable inputs in the experiment by 

randomly assigning factors and levels [115], [116]. Blocking is used to maximize an 

experiment’s precision and control by separating the experiment into similar parts for 

running all combinations in one condition. Moreover, replication is used to determine the 

common cause deviation and test error in the experimental results. For predicting the 

behavior and output of every process, doing a lot of experiments is essential. However, it 

takes time and money. DOE is a targeted tool for planning, investigate, and modifying a 

process [117], [118].  

Figure 2.18 demonstrates the general overview of DOE phases, steps, and examples of each 

step related to the testing PCBA. The factorial design is a method of DOE methodology 

that perform the evaluation of main significant factors and their interaction effects between 

some independent variables (predictors) and dependent variables (responses) [119]. Among 

different methods in the early phase of DOE, such as Taguchi design, response surface 
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design, etc., factorial design is the most popular method due to its simplicity, planning, 

arrangement, performance, and straightforwardness [112], [120], [121].  

In addition, when multiple sets of measurements are made during one scientific 

investigation, repetition occurs. However, replication is when you redo the entire 

experiment. Repetition shows the results how close to each other, and replication displays 

the estimate's accuracy (assuming there is no bias or systematic error). In this thesis, due to 

variability of sources (like different specimens at various corrosive conditions) and 

resource constraints (like time and cost of lab experiments), both repeats and replicate have 

been used to examine multiple sources of variability. 

 

Figure 2.18 DOE phases and steps. 

2.5 Data analytics framework 

This part introduces the need for data analytics and analytical techniques with a focus on 

predictive analytics for PCBA failure prediction. It overviews the difference between 

experimental design and the organization of outcomes in descriptive analytics, exploration 

of datasets pattern and investigation of the prediction models in predictive analytics, and 
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expresses recommendations and decision making in prescriptive analytics [122], [123], 

[124]. In other words, in analytical data procedures, descriptive analytics try to answer 

'what has already happened', and diagnose 'why did it happen' by proposing its root 

causalities [123], [124], [125]. Predictive analytics is the process of advanced analytics to 

realize the probability of future results founded on historical data and predict unknown 

prospective trends according to the descriptive analysis of data to answer the 'what is most 

likely to happen in future' questions  [126], [127]. Usually, prescriptive analytics make 

optimizations, proactive decisions, and recommendations base on the predictive analytics 

outcomes, and it answers the 'what can be done for it' questions [128], [129]. Figure 2.19 

presents the framework of data analytics in order from right to left, with a special question, 

explanation, and keyword from up to down [123], [124], [128], [130]. 

 

Figure 2.19 Data analytics framework showing different parts. 

 

 Predictive analytics for PCBA failure prediction 

Predictive analytics has been extremely used today in various applications such as finance, 

healthcare, heavy industry, transportation, and consumer goods [131], [132]. Predictive 

analytics aims to forecast future conditions [133]. The conditions could be the probability 

of an event occurring in the future (such as ECM occurrence in electronics), estimating a 

point of the time at which an event might occur (for example time to failure), or forecasting 
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a quantifiable amount of a dependent variable (leakage current when humidity form water 

film under different conditions) by applying the acquired predictive models [130], [134]. 

Predictive analytics use various statistical analyses, probabilistic approaches, and machine 

learning algorithms to assist in predicting and extrapolation data by incorporating the 

descriptive analytics output [128], [133], [135]. Figure 2.20 presents the framework of 

predictive analytics. In order to acquire information from a dataset, statistical analysis is 

used to predict a behavioural pattern like linear regression analysis [128]. Probabilistic 

approaches have been used to quantify the uncertainty by integrating information from a 

dataset in order to catch the appropriate distributions to calculate the likelihood, like the 

Weibull distribution and Monte Carlo simulation. Moreover, Machine Learning 

Algorithms have been used to predict the output according to training input datasets gained 

for analytical aims [136]. 

 

Figure 2.20 Various methods employed for Predictive analytics framework. 

 

2.5.1.1 Statistical analysis 

Statistical analysis is a branch of mathematical science that refers to gathering, organizing, 

investigating, interpreting, and presenting data [137]. The statistical analysis requires an 

appropriate design of the experiments upon the proper selection of samples to draw 

generalizations from the samples to the entire population [138]. Statistical analysis, in 

predictive analytics, deals with finding information from data to estimate variables' 

relationships and forecast behavior patterns [128].   
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Regression is a widespread and reliable statistical analysis technique that guesstimate the 

relationship between the dependent and independent variables [139], [140], [137]. A 

regression model is a mathematical function in which the assistance of the hypothesis test 

and analysis of variance (ANOVA) pursues a logical relationship between different 

variables [141], [142].  

ANOVA is a statistical hypothesis test to compare the average of several populations based 

on the calculation of the ratio between variances using the F-Test statistical class [143], 

[144]. ANOVA aims to determine whether population averages are equal or not by 

considering the amount of variability in a population and noticing if the variability is greater 

between populations than within populations [143], [144], [145]. 

The regression model is necessary to establish a logical relationship between the factors in 

deciding to implement new variations and attain optimal conditions [146]. It also is used to 

predict one variable, given the values of the others [147]. Usually, there are two types of 

regression models that are used in predictive analytics; linear regression and logistic 

regression model [148]. The linear regression model is applied to model the linear relation 

of the independent (predictors) and dependent variables [148]. Besides, logistics regression 

is used to model the categories of discrete dependent variables based on independent 

variables [148]. Table 2.4 illustrates comparison of regression and ANOVA in statistical 

analysis [149], [150], [151].  
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Table 2.4 Comparison of Regression and ANOVA in statistical analysis, adapted from [152]. 

 

Cook's distance as a modification tool is used to perform a regression analysis to estimate 

the influence of a data point by identifying outliers and views for predictor variables [153]. 

Cook's distance indicates the importance of each observation on the fitted response values, 

and data points having a large Cook's distance are considered as high force, which can 

garble the result and accuracy of regression [154]. In addition, backward elimination 

stepwise as another modification tool is performed through the regression analysis for 

making a reduced model based on significant factors [155]. The P-value or probability 

value in ANOVA is also a regression used to modify the analysis and determine the 

statistically significant (P-value < 0.05 has been selected as the cutoff) of factors and 

interactions [137], [156]. 

2.5.1.2 Probabilistic approaches 

Probabilistic approaches refer to the incorporation of random variables and probability 

distributions to give a predictive model of an event by quantifying uncertainty [157], [158], 

[159]. The uncertainty arises because of limitations in the ability to observe the entire 

system, defective observations, limitations in the ability to model it, and feasibly even 

innate nondeterminism [160], [161]. The probabilistic approaches are a significant key to 
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reliability assessment and evaluating risk [162]. The probability concept builds the 

principal of reliability and risk engineering. Moreover, the probabilistic method provides 

the required techniques for risk characterization for complicated engineering systems [29], 

[163]. The probabilistic approach attempts to estimate the mean value and uncertainty 

bound related to a random variable, data trends, and quantitative information for 

comparison using mathematical parameters [164]. In predictive analytics, probabilistic 

approaches are utilized to estimate the likelihood of future occurrences of particular events. 

For example, TTF due to ECM is a specific event on PCBA as random variables to 

characterize failure data trend using correct distribution to present the data shape for 

quantification, and then predict and compare. Typically, three strategies are utilized to 

select a suitable and valid probabilistic distribution, which presents in Figure 2.21 [29], 

[163], [165], [166].  

 

Figure 2.21 Diagram for determining the applicable probabilistic distribution. 

 

Generally, Weibull, exponential, and lognormal distribution are used for a lifetime and TTF 

prediction in the different test plans, special in accelerated life testing of electronic 

components [167], [168], [169]. The lognormal distribution is used to model rather wide 

scatter data and predict various aspects of reliability engineering [168], [170], [171], [172]. 

The probability density function (PDF) in the lognormal distribution depends on location 

(mean) parameters (µ) and scale (variance) parameter (σ), is as follow [173], [174], [175]:  
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The exponential distribution is broadly utilized in reliability engineering and describes 

electronic components' lifetime due to its simplicity and properties, like its constant failure 

rate [175], [176], [177]. The PDF of the single parameter (failure rate (λ)) exponential 

distribution is as follows [178]: 

f(t) = λ Exp(−λt) 

One of the most appropriate and applicable distributions is Weibull distribution for the 

continuous events compared to other distributions owing to its flexibility and adaptability 

for modeling datasets with few failure data, as well as in the accelerated life tests is used 

explicitly for failure prediction [29], [179], [180], [181], [182]. The Weibull distribution 

provides more precise failure analysis and risk calculations with few number of samples 

without the necessity to catch a few more [183]. The PDF of the three-parameter (3P) 

Weibull distribution is showed as follows [29], [183], [184]: 

f(t) =
β

α − 
(

t − 

α − 
)β−1. Exp[−(

t − 

α − 
)β] 

Where  (theta) is the location parameters, α (alfa) is a measure of the range and the 

characteristic value [29]. Further, β (beta) is the slope or shape parameter [185], [186]. 

Table 2.5 presents the effect of various beta values to determine failure rates. Figure 2.22 

also shows the different PDFs of Weibull distribution at different beta values. 

Table 2.5 Determination of failure rate by shape parameter changes [29]. 
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Figure 2.22 PDF of Weibull distribution at different beta values. 

 

The CDF, which is the probability that a component will fail within time t, as well as the 

reliability function as the expectation of no failure operation for Weibull distribution, is 

calculated as follows [186], [187]: 

𝐹(𝑡) = ∫ 𝑓(𝑡)𝑑𝑥
𝑡

0

 

After rearranging the equation, 

𝐹(𝑡) = 1 − exp [−(
𝑡

𝛼
)𝛽] 

𝑅(𝑡) = 1 − 𝐹(𝑡) = exp [−(
𝑡

𝛼
)𝛽] 

𝐹(𝑡) + 𝑅(𝑡) = 1 

The mean time to failure (MTTF) as the mean or average of TTF is the conventional 

parameter for characterizing the risk and reliability of the non-repairable component, and 

it obtains from the accumulated TTF of n components divided by the total number of 

failures. The inverse of the MTTF is commonly used to estimate the failure rate () of 

components and vice versa. At Weibull distribution,  can be described as [186], [187]: 

 =
𝛽

𝛼
. (

𝑡

𝛼
)𝛽−1 
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𝑀𝑇𝑇𝐹 = 1
⁄  

2.5.1.3 Machine learning algorithms 

Machine learning (ML) algorithms have been used for analytical purposes like predicting 

the outcome based on training input datasets without using explicit models [188]. 

Compared to other methods, ML algorithms provide more profound insights with; 

remarkable accuracy and ease of interpretation, managing the big data with good speed, 

mapping the nonlinear relationships, performing well with messy data (outliers and missing 

values), and visualizing multiple and complex interactions [189]. Supervised, 

unsupervised, and reinforcement learning are three main categories of ML algorithms, 

which are most widely used in different applications [190], [191], [192]. Figure 2.23 

illustrates an overview of three main categorical ML algorithms, classes of supervised and 

unsupervised learning, with various applications for each one. 

 

Figure 2.23 General overview of three main categorical ML algorithms, adapted from [190]. 

Supervised machine learning is the most common category of ML and provides the 

relationship between the input data that corresponds to the output data [193]. Meaning that, 

supervised learning has earlier information on the output for each input data and uses data 

that are well labeled [136], [194]. It makes a prediction model based on the training dataset 
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and assesses model performance using the test dataset [195].  There are two classes of 

supervised ML learning, including classification and regression [196]. The difference 

between them deals with output value, which for regression is a numerical and continuous 

value, whereas for classification is a categorical and discrete value [197]. In predictive 

analytics, ML algorithms are used to predict the future outcome from the input dataset 

based on its learned patterns. Figure 2.24 displays an overview of the most applicable 

supervised ML algorithms that are used in both classification and regression analysis. They 

included; k-nearest neighbors (k-NN), decision tree (DT), random forest (RF), support 

vector machines (SVM), and deep neural network (DNN), and in the following, they will 

express in detail [136], [198]. 

Unsupervised Learning is another category of ML algorithms and refers to identifying the 

structure and pattern of unlabeled data. Unsupervised learning is useful once just having 

accessibility to input data and training data which in some cases is hard to get or even 

unavailable [199], [200], [201]. Popular  classes include dimension reduction and clustering 

for big data visualization and recommendations [201], [202].  

Reinforcement learning is a reward-based category of ML in which the machine learns how 

to act in a specific environment (by using continuous observation gathered from the 

interaction with the environment) to get maximum rewards and minimize the risk [203], 

[204], [205]. Reinforcement learning is usually employed in robotics, autonomous vehicles, 

and artificial intelligent games [205], [206]. 

 

Figure 2.24 Overview of common ML algorithms utilized for both classification and regression 

analysis. 
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2.5.1.3.1 k-Nearest Neighbors 

The k-NN is a supervised ML algorithm used for both classification and regression 

analysis. k-NN recognizes the alike and nearest neighbors based on the preferences 

investigation [136], [207]. This algorithm consists of the K neighboring data in the feature 

space. The k denotes to the “number of nearest neighbors, whereas the nearest neighbor is 

a data point that is among the k closest data points to the data point under consideration” 

[136]. Two items are close if their distance is small [208]. When classifying a data point, 

k-NN votes overall labels of the neighboring data points, while k-NN regression predicts 

the value of the production variable by using a local average. K and weight are two primary 

hyperparameters of k-NN. K is the number of neighbors to evaluate, which is preferred 

have an odd value to avoid a tie between two or more class labels. 

2.5.1.3.2 Decision Tree 

The DT is a tree-based supervised ML algorithm, which can solve classification and 

regression issues [136]. DT algorithm by learning decision regulations deduced from the 

training dataset, forming decision nodes and leaf nodes branched from its root node [136]. 

The leaf nodes or terminal nodes are predefined as a category, and each branch from a 

decision node corresponds to a value of the corresponding attributes [209]. The main 

benefit of DT is that it is intuitive and simply understandable [136].  DT uses impurity 

measurement to find the optimal split on each node. Gini impurity is commonly used for 

classification-based DT, which gives the probability of misclassifying an observation 

[210]. DT has two significant hyperparameters; maximum depth of the tree and minimum 

samples to divide an internal node [136]. 

2.5.1.3.3 Random Forest 

For splitting the root node for the DT method, having outlier variables and correlated 

independent variables might be ended up in an improper variable being chosen [208]. A 

random forest (RF) algorithm with the combination of multiple trees can overcome those 

challenges by making numerous DTs [211]. Actually, random denotes to the random 

sampling of data from the original experimental dataset, and forest relates to the 

construction of multiple DTs [211]. Where each DT focus on a sample set of the data. RF 

chooses samples accidentally and averages or votes over the predictions from all the DTs 

for classification or regression analysis [136]. The number of trees and the maximum 
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fraction of data features to be split for trees in the Gini criterion are two significant 

hyperparameters of RF [136]. 

2.5.1.3.4 Support Vector Machine 

The SVM is a famous supervised ML algorithm used for classification as well as regression 

analysis [212]. It split up various target classes utilizing extreme or support vectors to make 

the hyperplane in multidimensional space [136]. By creating the best decision boundary, 

SVM can separate two or more classes with maximum margin to put new data points in the 

correct class [213]. Among the most key hyperparameters, gamma (γ), Kernel, and 

regularization (C) could be named, which directly influence the performance of SVM 

[136], [214]. Kernel functions are included in different kinds: linear, nonlinear, polynomial, 

sigmoid, and radial basis functions (RBFs). The penalty parameter is C [214], [215]. In 

order to control error, C is utilized [214], [215]. This study used RBF as the most preferred 

function because it makes appropriate separation once there is no former information of 

data [136], [216]. Besides, it is localized and has a limited response along the complete x-

axis [217]. γ is defined as the effect of a probable line of separation or the speared of the 

RBF function [136]. The value of gamma varies from 0 to 1. The low γ means less curvature 

or far-off points taken into account [136]. C ranges from zero to infinity. The low C means 

low error and vis versa. A kernel hyperparameter is a mathematical function that 

manipulates the data by taking it as input and transforming it into the required form of 

processing data. 

2.5.1.3.5 Artificial Neural Networks 

The ANN includes the multilayer perceptron that supports understanding complex 

connections between inputs and outputs [136]. Mostly, an ANN contains three layers: the 

input layer, hidden layer, as well as output layer, each consisting of various nodes [136]. 

The input layer usually encloses the independent variables that are utilized to predict the 

output [136]. The hidden layer consisting of nodes like biological neuron connections is 

used to make sense of non-linearity and complicated relations to change the input variables 

into a higher-order function [211]. These layers are recognized as hidden since they are not 

observable as a network output. Deep learning originates from having multiple hidden 

layers [218]. In a regression, usually would be just one node in the output layer. In 

classification tasks, the output layer includes same number of nodes as classes that 
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represent the dependent variables [219], while the output layer usually has one neuron (if 

the task is predicting one value). In the deep neural network (DNN) algorithm, the 

significant hyperparameters include the number of hidden layers and the number of neurons 

per each hidden layer [136].   

2.6 Literature on the use of data analytics for corrosion data analysis and 

objective of present thesis 

A usual data analytics process consists of three steps; the description of what and why 

happened and data collection, identification of data patterns and prediction, and making a 

prescription for the recommendation and reaction to evaluated and forecasted data to 

modify and decision-making. There are some data analysis of corrosion studies, related to 

metallic alloy corrosion rates [220], pitting corrosion [221], and corrosion resistance of 

steel [222]. However, some studies used data analytics process in predictive maintenance 

[223], and corrosion growth assessment [224]. Besides, only a limited studies has 

investigated, the data analytics process to detect, diagnose, and prevent impending failures 

in electronics [225], and used predictive analytics for detecting sensor corrosion failure 

[226]. Nonetheless, there is no clear discussion about data analytics, and especially 

predictive analytics, to forecast corrosion failures on PCBA surfaces. As the main 

objectives of the present PhD thesis, according to the different datasets of laboratory test 

results, the most important predictive analytics approaches from statistical, probabilistic, 

and machine learning models have been employed to predict numerical values of LCs and 

TTFs due to ECM failure, as well as categorical failure states of different conditions. In 

another word, related to the data analytics process, in this thesis, in the first step, plenty of 

PCB failure events in different corrosive conditions (composed of combined critical factors 

at different levels) occurred in the experimental tests using DOE and OFAT design are 

collected. Then the pattern of history data (experiments results), diagnosis, and various 

predictive models such as regression analysis, probabilistic distribution analysis, and 

different algorithms of machine learning technique in the second step are utilized to find 

the best prediction mode based on dataset, accuracy, limitations to prescribe a procedure of 

action to improve reliability and decrease failure risk in electronics. 
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3 Materials and methods   

This chapter provides an overview of the materials, specimens, experiments, and predictive 

methods employed in this project. Generally, the six critical factors, i.e., humidity (H), 

temperature (T), contamination type (CT), contamination level (C), pitch distance (P), and 

voltage (V), each of them at different levels, have been used at different experimental 

design for three individual studies. The combination of different factors and levels 

generated different conditions, and each condition presented different LC values, TTF, and 

distinct failure states based on DC current measurement. In order to monitor the general 

current behavior as the main indicator and define three different responses to it, the SIR 

DC measurement is applied to all of the experiments. The OFAT and DOE methodology 

has been used for data collection of experiences. The methods for predictive analytics on 

data, which were utilized, can be categorized into statistical, probabilistically, and machine 

learning analyses. Statistical analysis has been used to find information from data to 

estimate variables' relationships and forecast behavior patterns of the general current as a 

primary indicator. Probabilistic approaches have been used to estimate the likelihood of 

failure occurrence by quantifying the uncertainty and usage of appropriate distributions. 

Machine learning algorithms have been used to predict both numerical and categorical 

failure (LC and failure status) based on training input datasets obtained. A general 

introduction to each method used during this project is given in the following chapter. More 

detailed discussions of each experimental design and the applied predictive analytics 

methods can be found in the appended papers chapters (5-8). 

3.1 SIR PCB specimens 

The SIR PCBs including interdigitated electrodes separated by a dielectric. SIR PCBs based 

on the IPC standard testing is commonly used for electronics' climatic reliability. FR-4 

laminate with a thickness of 1.6 mm was the base substrate for the SIR PCBs. The SIR 

PCBs had the HASL surface finished following the IPC-4101/21 standard. Four different 

SIR comb patterns were used for different experiments, and Figure 3.1 displays them with 

more details about pitch distances, dimensions, and areas on a PCB. 
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Figure 3.1 Picture of the test SIR PCB patterns. 

3.2 Specimens preparation 

X In preparation of SIR PCBs before starting the test, three steps have been accomplished, 

which are included soldering, cleaning, and pre-contaminate. Figure 3.2 illustrates three 

steps of sample preparations before starting the current measurement by a potentiostat and 

putting the samples inside a climatic chamber. In the first step, the PCB connections are 

made using hand soldering of small wires to the electrical contacts on the PCB. In the 

second step, the SIR PCBs were cleaned using a mixture of deionized water as well as 

isopropanol. In this step also, PCBs are dried by an air compressor without the hand 

touching the PCB surfaces. In the third step, the solutions of 2.5g of different WOAs 

(glutaric acid, adipic acid, and succinic acid) as contamination types were dissolved in 100 

ml isopropanol at the 25g/l concentration. After calculation, the accurate amount of the 

solutions as contamination levels using a micropipette were distributed on the SIR patterns.  
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Figure 3.2 Three Steps before DC measurement and placing the specimens inside the climatic 

chamber. 

3.3 SIR DC testing and equipment 

SIR DC measurements have been used as a common test method for the climatic reliability 

and corrosion susceptibility testing of various factors in electronics. The BioLogic VSP 

potentiostat by multichannel workstation has been utilized to implement different DC 

voltages (from 0 to 10V) and measure leak current (from nA to A). An Espec climatic 

chamber by tolerances of ±2.5%RH and ±0.3°C has been used for creating various climatic 

conditions. The operational range of humidity and temperature is 10%RH to 98%RH and -

70°C to 180°C, respectively.  

All the experiments are performed to test the impact design specifications connected to the 

PCB, for example the pitch distance, voltage, and contamination type and levels under 

various climatic conditions using current DC measurement by the potentiostat and putting 

the specimens inside the climatic chamber. Moreover, a VHX digital microscope (Keyence, 

Japan) was utilized at ex-situ for the optical microscopy inspection of ECM and dendrite 

formation on the SIR surface boards and components. Figure 3.3 shows the real picture of 

the Espec climatic chamber, BioLogic VSP potentiostat with five channels, and VHX 

digital microscope that have been used in all experiments. 
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Figure 3.3 Espec climatic chamber, BioLogic VSP potentiostat with five channels, and VHX digital 

microscope. 

3.4 Statistical analysis 

The statistical analysis has been used to plan data collection (design of experiments), study 

of experimental results (data analysis), and predict models (regression equation). The 

multivariate regression analysis and ANOVA are established to find the relationship 

between sets of variables, as well as to understand the effect on dependent variables (LC, 

TTF, and failure status) of the independent variables (P, T, H, CT, C, V) and their 

significant interactions. 

3.5 Probabilistic analysis 

The probabilistic approach using acquired methodologies and tools for risk and reliability 

analysis of electronics devices has been used to predict TTF owing to ECM on PCB 

surfaces and quantify the probability of failures (PoF) under various conditions. The 

suitable probability distribution for all condition (combined of various independent 

factors/levels) based on three methods; i. the nature of data, ii. probability plotting, and iii. 

analytical techniques have been studied. Applying goodness-of-fit tests (i.e., Anderson-

Darling, Chi-square, and Kolmogorov-Smirnov tests) and maximum likelihood methods, 

the Weibull distributions as the most popular distributions for lifetime and failure 

prediction on the experimental conditions of the accelerated tests compared to other 

distributions have been chosen on entire TTFs dataset and utilized for making the prediction 

model.  
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3.6 Machine learning algorithms 

To predict the outcome based on training input datasets, ML algorithms have been utilized. 

The most important and applicable supervised ML algorithms, including; DT, RF, k-NN, 

SVM, and DNN for both regression and classification, have used to predict LC values 

(regression analysis) and failure state (classification analysis) on the PCB surface under 

various corrosive conditions. The regression analysis has been used for the prediction of 

LC, which can give us an insight into the initial situation before creating a failure status 

and maybe can avoid that. Moreover, the classification analysis has been used to predict 

the failure states, which can give us a good understanding of the critical conditions to 

increase the climatic reliability and reduce the risk of electronics. 
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4 Summary of appended papers 

4.1 Investigation of critical factors effect to predict leakage current and 

time to failure due to ECM on PCB under humidity 

Highlights: 

 The critical factors and their interactions on LC and TTF are characterized. 

 The LC and TTF are predicted using significant factors by factorial regression 

analysis, and ANOVA. 

 The general leak current behavior is analyzed under various critical conditions. 

 The correlation between LC and TTF are studied. 

Synopsis: 

This study investigated the significant influence of various factors/levels/interactions on 

PCB surfaces once exposed to different conditions along with using DOE, simulating, and 

statistical modeling. Under considering conditions the V does not significantly affect the 

LC values, whereas T, C, as well as P have in the descending order of most important 

effects. Though, voltage has a major impact on TTF response owing to ECM. The main 2-

way interactions for all responses have been C*T and P*T, and the 3-way interaction has 

been P*C*T. Generally, with ascending the LC values, the PoF has been increased, and 

roughly the lower TTF values have been related to the higher LC values. Figure 4.1 

illustrates the three general parts of current behavior as the main indicator, which are 

measured to describe LC and TTF on the PCB surface, besides its simulations at entirely 

experimental conditions using the Logistic function. 

  

Figure 4.1 Three parts of the general current behavior, and its simulations for all conditions. 
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4.2 Time to failure prediction on printed circuit board surface under 

humidity using probabilistic analysis 

Highlights: 

 The effect of four critical factors including P, T, C, and V are studied on the SIR 

PCBs under humidity using OFAT method. 

 The trend of LC and TTF owing to ECM on PCB surface are studied on three levels 

for all critical factors. 

 The Weibull distribution, multivariate regression analysis, and CART analysis are 

used to predict the probability of TTF. 

 Synopsis: 

This study, with a sensitivity analysis of four critical factors, each of them at three levels, 

estimating the PoF, and predicting a model for TTF based on probabilistic distribution 

analysis, has given an broad understanding to the failure occurrence on PCB surfaces under 

humidity. The T and P had the most key impact on TTF values and the PoF of the very fast 

(under 1 Hour) and fast classes (between 1-4 Hours). The importance of pitch distance 

increases the electric field to easily form dendrite formation during ECM. The temperature 

importance corresponded to the humidity, influences altering the DP range, the size of dew 

droplet formation, and increasing the electrochemical kinetics on the PCB surface. Figure 

4.2 as sample displayes (a) the trend, and (b) PDF of pitch distance at three levels with 

details parameters. 

 
Figure 4.2 (a) Fitted line plot and (b) PDF histogram of pitch distance at three levels. 
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4.3 Using machine learning algorithms to predict failure on the PCB 

surface under corrosive conditions 

Highlights: 

 The PCB failure prediction has been investigated under various corrosive 

conditions created by the mixture of six critical factors, including contamination 

level, humidity, temperature, pitch distance, voltage, and contamination type, each 

of them at three levels.  

 The typical supervised ML algorithms, including k-NN, DT, RF, SVM, and DNN, 

are utilized to train regressors and classifiers to forecast LC values and failed or 

Not-failed conditions, respectively. 

 Synopsis: 

This study used the most common ML algorithms to predict both LCs (regression analysis) 

and failure state (classification analysis) on the PCB surface under various corrosive 

conditions. The regression analysis has been used to predict LC, which can give us an 

insight into the initial situation before creating a failure state and maybe can avoid that. 

Moreover, the classification analysis has been used to predict the failure states, which can 

give us a good understanding of the critical conditions to increase the climatic reliability 

and reduce the risk of electronics. The best-trained model by the RF model successfully 

delivered the best performance in predicting PCB failures and LC values on the test dataset. 

Figure 4.3 illustrates (a) the confusion matrics, and (b) KDE plot of RF for assessing the 

classification and regression accuracy, respectively. 

 
Figure 4.3 (a) Confusion matrices, and (b) KDE plot of RF on test dataset. 
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5 Manuscript I 

Investigation of critical factors effect to predict leakage current 

and time to failure due to ECM on PCB under humidity 

 

S. Bahrebar, R. Ambat, Investigation of critical factors effect to predict leakage current and 

time to failure due to ECM on PCB under humidity, Microelectron. Reliab. 127 (2021) 114418. 

https://doi.org/10.1016/j.microrel.2021.114418. 

 

ABSTRACT- Experiments using the Design of Experiment (DoE) methodology were 

carried out to investigate the effects of pitch distance (P), temperature (T), voltage (V), and 

contamination (C) on the leak current measured on Surface Insulation Resistance (SIR) test 

boards. A 24 full factorial design with eight replications was performed, and the response 

was measured continuously over a 20 hours period for each experiment. Current measured 

over time exhibited a clear pattern of an initial low and stable current, followed by a 

transition to a much higher current. Microscopic analysis of the boards indicates that the 

transition is due to dendrite formation due to electrochemical migration (ECM). The time 

at the start of this transition phase was identified as the Time to Failure (TTF) for each 

experiment. Leakage Current (LC) was also calculated as the mean current prior to failure. 

Analysis of Variance methods were used to model both TTF and LC. Both TTF and LC 

were found to be significantly affected by P, T, and C. However, the effect of V was found 

to be significant only for TTF. The general current behavior over the prolonged 

experimental period and the resulting statistical models give new insight into the failure 

process related to ECM.  

Keywords: Design of Experiment, Full Factorial Design, Leakage Current, Time to 

Failure, PCB Surface. 
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5.1 Introduction 

Climatic reliability of electronic devices is a significant issue today due to the widespread 

use of electronic devices in different climatic conditions depending on the place of use. An 

increase in the assembly design density and miniaturization of the Printed Circuit Board 

Assemblies (PCBAs) pose challenges for obtaining climatic reliability [1]. The PCBAs are 

the main part of electronic devices that are influenced by climatic changes such as humidity 

and temperature changes due to water film formation [2]. Water film formation can 

potentially occur at most climatic conditions due to unpredictable transient conditions as 

well as PCBA surface characteristics [3]. Under transient conditions, water film formation 

on the PCBA could be accelerated due to the presence of ionic and hygroscopic 

contaminants, which is mostly connected to the residues from the soldering process [4]. 

Formation of water film results in leak current between adjacent biased points on the PCBA 

surface and Electrochemical Migration (ECM) failure due to dendrite bridging.  

Subsequently, it can affect the product performance and lead to severe deterioration of the 

electronic devices [5], [6]. Generally, electrochemical interactions on electronic devices are 

defined as a process that leads to parasitic circuits resulting in leak current, impedance 

changes, and dendrite bridging [7]. 

To improve the robustness, most important aspect is to control the transient water layer 

build up [8]. Level of water film build up on the PCBA surface depends on the synergetic 

effects of various factors such as material characteristics, manufacturing and cleaning 

processes, potential bias, PCBA design, and climatic variations such as changes in humidity 

and temperature [8]. In other words, the assessment of the impact of these parameters is 

performed under the conditions relevant for the electronics operation and under accelerated 

tests for understanding the relationships between various parameters in determining the 

water film build-up and associated failures. The water film features are defined by the 

aspects of the PCBA design and electrochemical processes under various climatic 

conditions [9].  

Although there are various failure mechanisms due to corrosion caused [10], [11], [12], 

[13] by humidity and ionic contaminations on the PCBA surface and electronic 

components, leak current and failures due to dendrite formation by ECM has special 

significance due to the possibility of intermittent failures when transient condensing 
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conditions exists during application. Therefore, vast majority of failures are due to the 

corrosion failure mechanisms caused by the water film formation on the PCBA surface as 

a result of the device exposure to the climatic conditions, which is induced by the 

electrochemical processes between the biased points on the PCBA surface.  

The major failure mechanisms responsible for most failures of electronic components are 

the overstressed mechanisms [14], [15]. This means the conditions exceed the strength of 

materials and components, which frequently causes sudden and catastrophic failures, such 

as chemical failure mechanisms on the PBCA due to contamination and electrical failure 

mechanisms due to surface insulation resistance degradation [16], [17]. Both Surface 

Insulation Resistance (SIR) reduction and ECM can happen when the environmental 

conditions, e.g., water film formation, occur.  Therefore both SIR and ECM can be 

considered as overstress mechanisms, which gives a short product lifetime. There are some 

literature on leak current or ECM investigation without considering the time and relation 

of them [18], [19], [20], [21] however, in most cases, individual parameters are investigated 

rather than multi-parameter interactions [22], [23], [24], [25]. Forasmuch as often there is 

no individual factor to create a failure, finding interactions of parameters and intensity 

impact of each interaction at least in two-way, and three-way interactions besides, the 

relation between leak current and time to ECM beginning are imperative for the right 

understanding of failure process and proper prediction. 

There is some literature on models for TTF due to ECM based on physics of failure [26], 

[27], [28], [29] but, in this study, regression analysis as a probabilistic approach to 

reliability engineering was used to find regression model for both TTF and LC according 

to all critical factors/levels. The prediction range of the model was contained a single future 

response for the selected combination of variable settings. Besides, the general current 

behavior over the prolonged experimental period and the resulting statistical models were 

given into the failure process related to ECM.  

Investigation in this paper focus on finding critical factors effect to predict leakage current 

and time to failure on PCB surface under humid conditions. Paper presents findings from 

128 experiments at 16 different conditions in which leak current was measured 

continuously before, during, and after failures developed, subject to various parameters 

inside a climatic chamber. The SIR patterns used as test specimens were pre-contaminated, 
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using adipic acid as contamination type, which is one of the Weak Organic Acids (WOAs) 

commonly used in the flux system used for the soldering process. For all the experiments, 

current measured over time displayed a similar pattern consisting of a stable current, 

followed by a transition period, and finally a significantly higher current. However, the 

magnitudes of the initial and final currents, and the time-points of the transition periods 

varied for different experiments. The time at the start of the transition state was identified 

as the TTF for each experiment. LC was also calculated as the mean currents before TTF. 

The LC and TTF as two main responses were considered to investigate the effect of the 

critical factors, their interactions as well as made a prediction model using full factorial 

design method and Analysis of Variance (ANOVA). Besides, this study recognized the 

high-risk conditions and the relationship between the responses including the leak current 

behavior model by applying statistical analysis and a logistic model. Examining all the 

outcomes created a more comprehensive understanding of the effects of different 

factors/interactions and risky conditions on the SIR boards when exposed to humidity in 

order to transfer the knowledge to the real PCBA of various electronic devices. 

5.2 Materials and methods 

The full factorial design, or fully crossed design, is a statistical method that has been used 

since the 1920s in many applied fields in order to determine the effect of multivariate 

factors upon a response [30]. In this method two or more factors are chosen for 

investigation, each with two or more values as levels [31]. Next, experiments are designed 

to take on all possible combinations of these levels across all such factors to investigate 

each factor's simultaneous effect on the response variable, besides the effects of interactions 

between factors on the response variable [32]. For this study, a full 24 factorial design was 

chosen with four factors: Pitch distance (P), temperature (T), voltage (V), and 

contamination (C). In addition, eight replications were carried out on each condition, 

therefore ensuring all possible interactions between the factors that can be tested for 

significance. In the following sections, materials and experimental methods are described. 

The experimental conditions, including the choice of factor levels that are used, are 

provided. Finally, the choice of response variables and their analysis by ANOVA are 

outlined. 
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 Experimental setup 

5.2.1.1 Interdigitated SIR test PCB used for experiments 

The Test PCBs with two different Surface Insulation Resistance (SIR) patterns were used 

for the experimental work [33], [34]. Base substrate for the PCB was FR-4 laminate with 

thickness of 1.6 mm. The SIR pattern consisted of interdigitated electrodes separated by 

dielectric with two different pitch distances. The commonly used test method for the 

humidity related reliability testing of electronics is the SIR measurement, which include 

testing of the effect design characteristics related to the PCB such as the pitch distance, bias 

level, and hygroscopic contamination such as the one arising from the soldering process.  

The effect of humidity was assessed using the leakage current between the interdigitated 

pattern or measuring the Surface Insulation Resistance (SIR).  Generally, the low SIR 

values (high LC) are related to the more aggressive conditions such as high humidity, high 

bias level, and high contamination conditions in addition to the low distance between the 

electrodes.  

The test PCBs used in this include two different SIR patterns with two pitch distances 

namely 300 µm and 600 µm as shown in Figure 5.1. Surface finishing used for the electrode 

surface was Hot Air Solder Leveling (HASL) using a Sn solder alloy, in compliance with 

the IPC-4101/21 standard. The area of the small SIR pattern was 325 mm2 (13 mm × 25 

mm) with a pitch distance of 300 μm (called P1), while the large SIR pattern had 494 mm2 

(13 mm × 38 mm) area and a pitch distance of 600 μm (called P2). 
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Figure 5.1 Picture of the SIR PCBs used in this investigation: (a) Small pitch distance (P1), (b) Big 

pitch distance (P2). 

 

5.2.1.2 Preparation of the SIR Patterns 

A Before testing, PCBs were cleaned initially using an air compressor and a combination 

of deionized water and followed by isopropanol. Subsequently, the SIR patterns were 

contaminated with adipic acid mimicking an important Weak Organic Acid (WOA) 

activator commonly used in fluxes used for soldering process. Solution of this 

contamination was made up by dissolving 2.5 gram adipic acid in 100 ml of isopropanol 

(giving a concentration of 25g/L). Appropriate amount of this solution was applied on the 

SIR pattern and dried in order to obtain contamination levels of 50 and 100 μg/cm2 

matching with typical levels of flux residues usually seen after the wave soldering process 

[35]. 

5.2.1.3 Humidity testing 

Humidity exposure was carried out in a climatic chamber (Espec PL 3kph) with ±0.3°C 

and ±2.5 %RH tolerances. The RH, in accordance with the kind of contamination during 

the tests, was kept constant at 98%. RH level of 98% was chosen as the level is close to the 

Deliquescent Relative Humidity (DRH) for adipic acid, therefore prone to absorbing 

moisture under this condition. The stabilization time of 1.5 hours was used before each 

experiment in the climatic chamber. A BioLogic VSP, a multichannel electrochemical 

measurement system was used for applying potential to the SIR pattern and measuring the 
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current response (using chrono-amperometric method). A three electrode configuration was 

used by connecting one the electrode on SIR as working, while the other electrode was 

connected to both reference and counter. Two bias levels were used for investigation to 

mimic potential bias on the PCBA during application namely 5V and 10V. In addition, a 

digital microscope was used at ex-situ for the optical inspection of ECM and dendrite 

formation on the SIR surface board. 

 Experimental conditions 

Sixteen different experimental conditions were considered, consisting of four critical 

controllable and changeable factors (pitch distance, contamination level, temperature, and 

voltage) each at two different levels (low and high), besides three constant factors 

(humidity, contamination type, and experiment time). All the experiments were conducted 

at high relative humidity. At each condition, the current was measured over a period of 

72000 seconds (20 hours) in addition to a 1.5 hours period at the beginning of each 

experiment as a stabilization period of the condition inside the climatic chamber. Each 

experimental condition follows the naming process as follows; P1 or P2 (low and high level 

of pitch distance), a50 or a100 (low and high level of adipic acid as contamination), c45 or 

c50 (low and high level of temperature), v5 or v10 (low and high level of voltage) e.g. 

P1a100c50v10 condition, which illustrates P1 (small pitch distance), a100 (high-level 

adipic acid), c50 (high-level temperature), and v10 (high-level voltage), respectively. Table 

5.1 provides an overview of all the experimental conditions. The following sections present 

further details related to the importance of each factor and choice of factor levels.  

Table 5.1 The overall view of the various factors/ levels in this study. 

Factors 

 

Low Level High Level Unit Symbol 

Pitch distance  300 600 μm P 

Contamination 50 100 μg/cm2 C 

Temperature  45 50 °C T 

Voltage  5 10 V V 

Humidity  (Constant) 98% RH 

Contamination Type  (Constant) Adipic acid 

Time of exposure (Constant) 20 hours 
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5.2.2.1 Pitch distance on SIR PCB 

The pitch distance is a significant parameter in connection with humidity effects on 

electronics due to the increased electric field between points with decreasing distance when 

water film forms.  Today, one major factor increasing the climatic reliability of electronics 

is the miniaturization for high component density, therefore reducing the spacing on PCBA 

surface.  

5.2.2.2 Contamination 

In Cleanliness is an essential issue for the failure of PCBAs. In other words, the formation 

of the water layer and the potential for corrosion occurrence are both determined by the 

PCBA cleanliness [36].The detrimental effects of the contamination depend on different 

factors such as the type of contamination, the amount of contamination (contamination 

level), and the location of the contamination. Origin of contamination can be from the 

PCBA manufacturing process or from service conditions [37], [38], although the residues 

resulting from soldering process is most important.  

The contamination effects on the PCBAs with the combination of climatic conditions cause 

different issues, such as the reduction of surface insulation resistance and increase in 

corrosion.  Due to the hygroscopic properties as well as high solubility in water, they can 

accelerate the water film formation and failures on PCBA. The WOAs solubility is 

specified as the residue amount, which can dissolve at a specific temperature. Moreover, 

the WOAs strength defined by the dissociation of the acids [39]. The solubility and strength 

of WOAs determine the conductivity of the water film formed on the PCBA surface, while 

high conductivity leads to high leakage current value.  The main source of contamination 

on a PCBA surface is from the component assembling process, which is related to the use 

of solder flux for the automated soldering process  [40]. Adipic acid is a common activator 

compound used in such kind of flux system, hence used for this investigation at two levels 

namely 50 μg/cm2 and 100 μg/cm2. 

5.2.2.3 Climate conditions 

The climatic conditions to which the electronics exposed include many factors such as 

humidity, temperature, and other atmospheric contaminations. External atmospheric 

contamination influence on electronics is usually less due to the relatively tight packaging. 
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Daily humidity and temperature variation influence the humidity build up inside the device 

causing transient condensation effects, which is also depends on the hygroscopic nature of 

the PCBA surface such as the presence of ionic residues (for example the adipic acid used 

in this investigation). In this investigation only the temperature is varied, while keeping the 

humidity level above the deliquescent humidity level for the adipic acid. The deliquescent 

humidity level for adipic acid is reported to be 98-99 %RH at temperatures 25, 40, 60 °C 

[41].   Hence, two levels of temperature 45 °C and 50 °C are used. 

5.2.2.4 Voltage 

The voltage is another critical factor in relation to humidity related failure on a PCBA 

surface. Bias level on an actual PCBA surface can vary from low voltage to high voltage 

levels.  For the present investigation, two levels of voltages are used namely 5 and 10 V. 

 Typical response from testing and failure modes 

Each experiment provided a leak current profile over the 20 hours of duration as shown in 

Figure 5.2. The first step in the analysis of the data was to understand the behavior of the 

current over time and link this behavior to the physical events. Microscopic examination 

of the SIR patterns before and after the experiment was carried out for any dendrite build 

up and compared with the current profile. Dendrite formation leads to a substantial increase 

in leak current compared to the base level leak current.  It was found that the functional 

form of the current over time could be approximated by a logistic growth curve, and this 

curve was fitted to the results at each condition for further insight. 

In the second part of the statistical analysis, two key quantities of interest were defined, 

denoted by the Leakage Current (LC) average value and Time to Failure (TTF). The 

responses are extracted from the current profile of each experiment resulting in 128 values 

of LC and TTF for the eight replications corresponding to the 16 conditions. Significant 

effects for each response is determined through Analysis of Variance (ANOVA) using 

Minitab Statistical Software. First, a full model with all main and interaction effects was 

fitted. Next, a stepwise, backward elimination procedure was performed with a significance 

level of α=0.05 until only significant terms remained in the model.  
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5.3 Results and discussion 

 Leak current profiles from testing and microscopic analysis 

The experimental results showing leak current versus time from various experiments are 

shown in Figures 13 and 14 in the Appendix. As represented in Figure 5.2, general behavior 

of the leak current was S-shape current behavior under each exposure condition, which can 

be approximated as the yellow line in Figure 5.2.  As shown in Figure 5.2, generally the 

current follows three state corresponds to the increasing effect of humidity on the SIR 

failure namely:  initial stable current, transient, and higher and sometime unstable current 

after the transient.  

 

Figure 5.2 Typical result from humidity testing: Three interdependency states of current behaviors 

create a failure mode on the PCB surface. 

The stable state included the initial part of the measured current at each condition below 

the current suddenly increases. This initial stable current part is due to the surface 

electrochemical process when the water film forms and the corresponding faradic current 

between the positively biased electrode (anode) and negative biased electrode (cathode). 

The tangible LC value in the SIR reduction state is around 1 μA in the present case.  

Depending on the sensitivity of the PCBA in question and the value of the base level leak 
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current, first level of failures can occur just due to the parasitic leak current interfering with 

the functionality of the PCBA. With continued electrochemical process, in the second stage, 

the dissolved metal ions from the anode slowly migrate to the cathode and deposit in the 

form of dendrite electrically bridging the anode and cathode.  Corresponds to this, the leak 

current curves show a sudden jump in current (transient part), which can be considered as 

the beginning of the second level of failure due to ECM (TTF). The time corresponds to 

this transient state depends on the aggressiveness of the conditions.  For instance, the 

transient state for low pitch distance at a high level of other factors such as temperature, 

contamination, and voltage is very short.  The threshold of around 100 μA for this state is 

defined for the present analysis, which is detected for the ECM and dendrite formation. 

The transient part of the curve where the dendrite filament grows reducing the distance 

between anode and cathode in the surface conductive electrolyte (therefore corresponding 

current increase) finally leads to a permanent conductor bridging (high current region after 

the transient).  Generally, the LC value larger than the ECM threshold represents the short 

circuit caused by a permanent dendrite in the third state [42]. In other words, ECM will be 

continued until reaching the short circuit. This represents a hierarchical failure mechanism, 

which leads to a short circuit with interdependencies between the failures. 

The Logistic function as a nonlinear growth function has the appropriate shape for 

describing the current behavior. A logistic function is a familiar S-shaped curve (sigmoid 

curve) and a popular model for predicting later changes with the below equation [43], [44]: 

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑣𝑙𝑎𝑢𝑒 (𝑡) = 𝐴2 +
𝐴1 − 𝐴2

1 + (
𝑡
𝑡0

)𝑝
 

Where A1 is the lower asymptote, A2 is the upper asymptote, p is the power, and one 

important point on the logistic curve is the center point or the inflection point, t0, where the 

curvature of the graph changes from concave-upward to concave-downward.  

Figure 5.3 displays the current profiles based on the logistic model for the various 

experimental conditions. Each curve has presented the current average of 8 replications for 

each condition, which included the average of LCs (stable part) as A1, the average of 

currents of the unstable parts as A2, and the center point’s average of the transient parts as 

t0. The initial value for all large pitch distance (P2) experiments is less than 100 mA. The 
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slope of the transition part for P2 experiments is slower than the P1 experiments, which 

refers to the longer time dendrite formation for the P2 compare to P1 test PCB. Table 5.2 

illustrates the logistic model parameters as well as four qualitative classifications of failure 

risk (<1h, very high risk – 1h< <3h, high risk – 3h< <6h, medium risk - >6h, low risk) 

according to the average of TTF for each condition. Approximately, the increasing power 

values and center point values have an inverse relationship with the probability of failure 

risk on PCB surface for each condition.  

 

Figure 5.3 The logistic model of current behavior at wholly experimental conditions. 

 Table 5.2 The logistic model parameters along with failure risk at each condition. 

 

A

1 
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Figure 5.4 and Figure 5.5 present the formation of dendrite filament and permanent 

electrical connection between anode and cathode on the SIR board surface corresponds to 

different parameters for testing for which the leak current with transient increase was 

obtained. The SIR reduction occurs by increasing the surface electrochemical activities 

(conductivity) between the two electrodes (Anode-Cathode) due to dissolved ionic flux 

residues in the adsorbed water molecules, which are created by the combination of PCB 

material, contamination of flux residues, and climatic conditions factors on the SIR pattern 

surface (stable part-A1). The ECM is formed by generating conductive electrolyte between 

two electrodes, and the dissolution of anodic metal ions, and migration and deposition at 

the cathode. Formation of dendrite from the cathode and growth towards anode is 

represented by the transient part (t0). Eventually, the dendritic filament grows adequately 

large to reduce the minimum distance between the anode and the cathode. With having 

continuity of the conditions, the metal ionic filaments produce a permanent conductor 

bridging, and then the short circuit occurs as the most major failure mode on the PCBAs 

(unstable part-A2).  

 

Figure 5.4 The optical appearance of ECM and short circuit on the P1 SIR board before and after 

exposure to 100 mg/cm², 45°C and 10V. (a before and b after experiment). (1): 20x magnification, 

(2): 50x magnification, (3): 100x magnification, (4): 150x magnification, (5): 200x magnification. 
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Figure 5.5 The optical appearance of ECM and short circuit on the P2 SIR board before and after 

exposure to 100 mg/cm², 45°C and 10V. (a before and b after experiment). (1): 20x magnification, 

(2): 50x magnification, (3): 100x magnification, (4): 150x magnification. 

 Distribution of LC and TTF 

From each experiment, the LC and TTF values were extracted by visual examination of the 

graphs. Box plots of the eight replications for all sixteen conditions intended for LCs and 

TTFs are shown in Figure 5.6 and Figure 5.7, respectively. For the LC box plot, there are 

two extreme values; one of them belongs to the fifth experimental condition at the low level 

of pitch distance and the high level of other factors (P1a100c50v10) (P1 (small pitch 

distance)- a100 (high level adipic acid as contamination- c50 (high level temperature)- v10 

(high level voltage)), and another one belongs to the experimental condition at the high 

level of temperature and low levels of other factors (P1a50c50v5). 
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Figure 5.6 Box plot for base leak current values from various experiments. 

 

 

Figure 5.7 Box plot for TTF by ECM from various experiments. 

The LC average of just two experimental conditions (P1a100c50v10 and P1a100c50v5) 

exceeds 0.01 mA. They had similar pitch distance (P1-low level), contamination (100 

μg/cm2 – high level), temperature (50°C- high level), and only dissimilar voltage levels. 

The mean TTF of these two experimental conditions is also much lower than the other 

experimental conditions.  

Figure 5.8 clearly shows the relation between the average TTFs and the average LCs for all 

experimental conditions. Approximately, it can be expressed that TTF happened under one 

hour for all high LC levels (more than 0.01 mA or 10 μA). In other words, if LC is greater 

than 0.01 mA, then TTF is always less than 1 hour. Besides, the failure happened after 6 

hours for the only high level of the pitch distance at low temperature and voltage levels.  
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There is an explicit effect of the pitch distance factor on the average of TTF (Figure 5.8 - 

left). The lowest TTFs belong to the conditions with small pitch distances, and the highest 

one belongs to the big pitch distances, regardless of other factors. The experimental 

conditions versus the average of LCs (Figure 5.8 - right) show the importance of the 

interaction between factors, especially in the highest LC value, which is independent of an 

individual factor effect. In the next section using ANOVA, all individual and interaction 

effects have been explained. 

Figure 5.9 describes the relationship and interactions between TTF and LC values using a 

logistic curve. Considering each x as a LC value, it can predict the proportional TTF 

according to the estimated parameters from the model inside Figure 5.9.  

  

Figure 5.8 The 16 experimental conditions vs. the average of TTF and LC. 
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Figure 5.9 TTF versus LC with fitted logistic curve. 

 

 ANOVA models for LC and TTF 

Due to the skewed distributions of both LC and TTF, a log transform was applied before 

performing the ANOVA analysis. The stepwise backward elimination procedure was 

applied to remove non-significant terms in the model, starting with a full model containing 

all main effects and interactions [45]. After running the procedure and examining the 

residuals, it appeared that the LC observation had an outlier with a high value for Cook's 

Distance. This observation was removed before repeating the model selection procedure 

for the LC model. It was not necessary to remove any outliers for the TTF model.  The 

estimated effects (where factor levels are coded as -1 and 1 for the low and high levels, 

respectively), as well as the ANOVA table for the final models, are shown in Table 5.3 and 

Table 5.4. The first column of these two tables, have presented the effect of each significant 

factor and their interactions along with the negative or positive effect of them on LC and 

TTF, respectively.  

Table 5.3 The ANOVA table with the coded coefficients for LC. 

Source Effect DF SS Contribution MSS 
F- P- 

Value Value 

Model   6 57.228 65.68% 9.538 38.28 0 

Linear  3 39.773 45.65% 13.2333 53.11 0 

P -0.3158 1 3.267 3.75% 3.165 12.7 0.001 
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C 0.7884 1 19.794 22.72% 19.7256 79.16 0 

T 0.721 1 16.712 19.18% 16.4998 66.22 0 

2-Way Interactions  2 14.661 16.83% 7.3507 29.5 0 

P*T -0.3275 1 3.556 4.08% 3.4033 13.66 0 

C*T 0.5939 1 11.105 12.75% 11.1959 44.93 0 

3-Way Interactions  1 2.794 3.21% 2.7942 11.21 0.001 

P*C*T -0.2967 1 2.794 3.21% 2.7942 11.21 0.001 

Error  120 29.901 34.32% 0.2492     

Lack-of-Fit   9 2.705 3.10% 0.3005 1.23 0.286 

Pure Error  111 27.196 31.21% 0.245     

Total   126 87.129 100.00%       

 

Table 5.4 The ANOVA table with the coded coefficients for TTF. 

Source Effect DF SS Contribution MSS 
F- P- 

Value Value 

Model   7 161.696 78.63% 23.0994 63.07 0 

Linear  4 148.569 72.25% 37.1424 101.42 0 

P 1.7531 1 98.348 47.82% 98.3483 268.54 0 

C -0.2886 1 2.665 1.30% 2.6648 7.28 0.008 

T -1.0887 1 37.928 18.44% 37.9284 103.56 0 

V -0.5485 1 9.628 4.68% 9.628 26.29 0 

2-Way 

Interactions 
  2 10.512 5.11% 5.2562 14.35 0 

P*T 0.3621 1 4.195 2.04% 4.1946 11.45 0.001 

C*T -0.4443 1 6.318 3.07% 6.3178 17.25 0 

3-Way 

Interactions 
  1 2.614 1.27% 2.6142 7.14 0.009 

P*C*T 0.2858 1 2.614 1.27% 2.6142 7.14 0.009 

Error   120 43.947 21.37% 0.3662     

Lack-of-Fit  8 3.094 1.50% 0.3867 1.06 0.396 

Pure Error   112 40.854 19.87% 0.3648     

Total  127 205.643 100.00%       

 

Table 5.5 presents the full factorial regression summaries, including the significant factors 

and interactions. The significant factors and both interactions (2-ways and 3-ways) are 

presented at each column in order of highest to lowest significance. In other words, the 

contamination, temperature, pitch distance on the LC response, as well as the pitch distance, 

temperature, voltage, and contamination factors on the TTF, have been ranked from the 

most significant to the least significant effect, respectively. Moreover, the interaction of 

contamination*temperature (C*T) has more effect than pitch distance*temperature (P*T) 
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as significant two-way interactions. In addition, the regression equations in un-coded 

variable units with the determination coefficient (R-sq) and the standard deviation of the 

error between the model and experiment (S) on responses is accessible. The factors having 

the biggest effect on TTF were P followed by T. According to this model, the LC value and 

TTF can be predicted based on the critical factors changes. Approximately, the prediction 

models for both LC and TTF can predict conditions with 20% upper than the high level and 

20% lower than the low level of each factor. 

Table 5.5 The full factorial regression model summary. 

 

 Model validation 

The validity of the ANOVA results depends on the assumptions of normality, independence 

and constant variance of the errors [46]. Diagnostic plots to check these assumptions are 

shown in Figure 5.10. The normal probability plots and histograms suggest that the 

residuals for both models follow a normal distribution. There is no indication that the 

independence assumption of the errors is violated from the plots of residuals over time. The 

assumption of constant variance could be debated, as for LC, residual variance appears to 

increase with increasing fitted values, whilst for TTF, the residual variance appears to 

decrease with increasing fitted values. However, there is no extreme departure from 

constant variance, and overall the results are deemed acceptable. 
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Figure 5.10 Residual plots for LC (left) and TTF (right). 

 Model interpretation  

The ANOVA models show that P has a large positive effect on TTF, whilst C, T, and V all 

negatively affect TTF. In the LC model, P has a small negative effect on LC, whilst C and 

T have a larger positive effect on LC. It is noteworthy that effect of V on LC is not 

significant, however V is more important for ECM failure. Lower influence of V on LC 

might be due to the fact there is a limit of current that can be passed through the limiting 

thickness of water film. Hence, increase in V will not significantly influence the leak 

current unless other parameters such as P or C changes. On the other hand, voltage is an 

important parameters determining the electric field for dendrite growth, therefore shows 

bigger influence on TTF due to dendrite growth.  Moreover, the LC as mentioned in the 

first part of this section, belongs to SIR reduction part and occurs by increasing the 

conductivity between the anode and cathode due to dissolved ionic flux residues in the 

adsorbed water molecules, which has created by the combination of PCB surface material, 

contamination of flux residues, and climatic conditions factors before ECM.  

The contamination and temperature interaction has more significant effect on LC and TTF 

compared to other interactions on LC prediction. Following this, the interaction of pitch 

distance with temperature and contamination significantly affects LC values. These factors 

and interaction effects on LC refer to initial stage part of the leak current curves, which 

represents the initial current due to the faradic process before culminating into the dendrite 

formation.  

Figure 5.12 in the Appendix also shows all the LC and TTF interactions by the contour 

plots. Generally, there is an interaction effect between two different factors if they show 
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the different behavior (decreasing or increasing) of diverse levels on the response. For 

instance, the contamination and temperature interaction (C*T), as one common two-way 

interaction in both responses, visually are displayed the interaction. For TTF response, in 

the low level of temperature, increasing level of contamination, causes a little incremental 

effect on TTF value, but in the high level of the temperature, increasing contamination level 

causes a high decrement effect on TTF. 

As the models contain many interactions, direct interpretation of the coefficients is 

challenging. However, predictions from the models can be calculated for a range of inputs 

in order to reveal the implications of the model. For examining the model's accuracy, as an 

instance, five levels of contamination at the low level of temperature and the high levels of 

the pitch distance and voltage, with five replications on each level, have been measured. 

The predicted values of both responses (average of LC and TTF) together with the 

Prediction Interval (PI) are shown in Figure 5.11. These figures present the accuracy of the 

prediction model compared with experimental results for LC and TTF. The model 

predictions are close to the observed experimental responses, suggesting that the models 

extrapolate reasonably well to contamination levels outside the original experimental 

range. 

 

Figure 5.11 Prediction plot for LC (left) and TTF (right). Each blue point is the mean of 5 

experiments. The red squares show the model predictions. The purple triangles and green diamonds 

show the model 95 % prediction interval. 

 Overall discussion  

This section provides a summary of main outcomes and new insight from this 

investigations:  
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 In this study, the full factorial regression analysis has been used to investigate the 

significance of four changeable factors (P, C, T and V) and their interactions effects 

under the constant relative humidity, one contamination type, and longtime of 

experiments on two main failure modes (leakage current (LC) and time to failure 

(TTF) due to ECM that cause the short circuit on the PCBAs), simultaneously.  In 

tables 3, 4, and 5, investigation of main significant factors effects, their interactions, 

as well as how they will affect responses (i.e., LC and TTF), with more details have 

been presented. One novelty of this study is to consider the combination of critical 

factors together and assessing their interactions on PCB surface at the same time, 

which shows a new insight for doing DoE, simulate, and model close to realistic 

conditions. In addition, from the scientific contribution point of view, it creates a 

more comprehensive understanding of the effects of different 

factors/levels/interactions on PCB surface when exposed to various conditions. 

 Another important aspect is that the LC and TTF have been measured together at 8 

replications for each condition (Figure 5.13 and Figure 5.14). The correlation 

between responses (i.e., LC and TTF) is calculated and presented in Figure 5.9. 

Moreover, the correlation between inputs (i.e., 4 critical factors) and responses (i.e., 

LC and TTF) by using factorial regression equation have been estimated and 

presented in table 5. Without waiting until failure happen for some conditions which 

can take a long time, to reach and observe TTF; having LC and its relation with 

TTF (which is presented in Figure 5.9) at various conditions, TTF can be predicted. 

Here the new insight is to study and investigate the LC and TTF interactions on the 

PCB surface at various conditions and finding appropriate equation to predict TTF 

based on LC changes. Moreover, the adequacy and the accuracy of the regression 

model, which is the correlation between factors and responses, have been 

investigated and displayed in Figures 10 and 11. 

 Partitioning the current (C) behavior in Figure 5.2 at three general parts (stable, 

transient, and unstable parts) gives us another insight into the overall current (C) 

behavior, which is like a sigmoid curve. The mathematical simulation of the entire 

current (C) behavior and their parameters is presented in Figure 5.3 and Table 5.2 

by the Logistic function (as a nonlinear growth function for predicting later 

changes). This provides the possibility for making the prediction model of whole 
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current (C) behavior at various conditions. The combination of logistic function and 

regression equation can be used for creating a logistic prediction model to predict 

the current behavior at different conditions as another novelty of this study. In 

addition, the classification of risky conditions is another new insight of this research 

according to the average of TTF for each condition, which presented in Table 5.2. 

5.4 Conclusion 

i. The pitch distance has a major effect in both responses but in different directions; 

in other words, for LC, pitch distance has a negative effect, while for TTF, it has 

a positive effect.  

ii. The voltage does not affect the LC values significantly, while temperature, 

contamination, and pitch distance have in the decreasing order of most 

significant effects. However, voltage has significant effect of TTF due to ECM.  

iii. The common significant 2-way interactions for both responses are 

contamination*temperature (C*T) and pitch distance*temperature (P*T), and 3-

way interaction is pitch distance*contamination*temperature (P*C*T). 

iv. The best setting of factors have been identified in order to reach to the minimum 

LC and maximum TTF for more sustainable PCBAs in the high level of pitch 

distance and the low level of other factors. Having this condition, means the low 

level of each factor except pitch distance, the lowest LC value can presented 

between 0.0015-0.0026 mA and the TTF range between 8-11 hours.  

v. Approximately the higher LC has related to the lower TTF. It means that with 

increasing the LC, the probability of failure increases.  

vi. The prediction models with a reasonable extrapolation for both LC and TTF can 

approximately predict conditions with 20% upper than the high level and 20% 

lower than the low level of each factor. 
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Appendix 

 

 

Figure 5.12 The contour plot for LC (up) and TTF (down).         
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Figure 5.13 Overall leakage current results with exposure to all factors and levels on the SIR 

patterns at the low level of temperature (45°C): (a1) the low pitch distance, contamination, and 

voltage level. (b1) The low pitch distance, contamination, and high voltage level. (c1) The low pitch 

distance, voltage, and high contamination level. (d1) The low pitch distance, high contamination, 

and voltage level. (a2) The high pitch distance, low contamination, and voltage level. (b2) The high 

pitch distance, voltage, and contamination level. (c2) The high pitch distance, contamination, and 

low voltage level. (d1) The high pitch distance, contamination, and voltage level. 

 

Figure 5.14 Overall leakage current results with exposure to all factors and levels on the SIR 

patterns at the high level of temperature level (50°C): (a1) the low pitch distance, contamination 

and voltage level, (b1) The low pitch distance, contamination, and high voltage level, (c1) The low 

pitch distance, voltage, and high contamination level, (d1) The low pitch distance, high 

contamination, and voltage level, (a2) The high pitch distance, low contamination, and voltage 

level, (b2) The high pitch distance, voltage, and high contamination level, (c2) The high pitch 

distance, contamination, and low voltage level, (d1) The high pitch distance, contamination and 

voltage level.  
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6 Manuscript II 

Time to Failure Prediction on Printed Circuit Board Surface 

under Humidity using Probabilistic Analysis 

 

S. Bahrebar, R. Ambat, Time to Failure Prediction on a Printed Circuit Board Surface Under 

Humidity Using Probabilistic Analysis, J. Electron. Mater. (2022) 1–19. 

https://doi.org/10.1007/s11664-022-09668-7. 

 
ABSTRACT- This paper presented the probabilistic study of time to failure (TTF), which 

is caused by combinations of various important controllable factors on printed circuit board 

(PCB) surface under humidity. The study investigated the impact of four changeable factors 

including pitch distance, temperature, contamination, and voltage, each of them at three 

levels upon the surface insulation resistance (SIR) test boards. Constant 98% relative 

humidity (RH) with adipic acid as contamination related to flux residue was used for a 20 

hours parametric experiments. Two main states were considered on the whole output 

current measurements: the stable part before and the unstable part after the short transition 

phase due to electrochemical migration (ECM) on the PCB surface. Leakage current (LC) 

in the first state and TTF at the beginning of the second stage was measured with five 

replications for each condition as the predictive indicator in all models. The trend of LC 

and TTF was also investigated on three levels of each factor. In addition, probabilistic 

distribution analysis using fitted Weibull distribution, multivariate regression analysis, and 

the classification and regression tree (CART) analysis were used to predict the probability 

of TTF and failure risk prediction on the PCB surface. All the prediction models had an 

acceptable prediction of TTF at diverse accuracy levels, according to changing 

factors/levels. Nevertheless, the multivariate regression analysis had the best prediction, 

highest R-sq, and lowest error compared to the other models. 

 

Keywords: probabilistic analysis, prediction model, probability of failure, PCB surface, 

time to failure. 
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6.1 Introduction 

Development in electronics usage, causes an increase in the user demand for robust 

performance in various environments, while miniaturization is occurring at system, printed 

circuit board assembly (PCBA), and component level [1]. The use of a smaller size of 

components is growing due to PCBA miniaturization, which causes a higher electric field 

at the same conditions compared to a larger size when exposed to humid conditions 

resulting in water film formation [2]. The increase in component density and their influence 

on each other under the space reduction on the PCBAs is a challenging issue today 

especially for use under harsh conditions [3]. Many of the small-sized electric components 

consequently have smaller pitch distances that play an important role in their failure 

mechanisms [4], [5]. Hence, pitch distance (P) has been considered as one of the critical 

factors having a direct effect on increasing or decreasing the time to failure (TTF) on 

PCBAs when exposed to various climatic conditions. It refers to the spacing between two 

oppositely charged conduction lines or between electrodes of a component on PCBAs.  

The soldering process, especially wave soldering introduce contaminatioan during 

manufacturing process, which together with other factors influence the humidity related 

corrosion failures on PCB surface [6], [7].  Moreover, the hygroscopic nature of the flux 

residue chages the humidity boundary for water film formation when exposed to a  climatic 

profile during operational environment [8]. Adipic acid as active components in flux 

residue could have different deliquscence relative humidity (DRH) and efflorescence 

relative humidity (ERH) level depending on the chemistry [9]. Hence, the contamination 

(C) is one of the other critical factors beside pitch distance for failure creation on PCB 

surface under humid exposure. Generally, contamination on a PCB surface originates from 

three cases namely: (i) manufacturing process such as flux residue as described before, (ii) 

service related contamination for example atmospheric particles settling on the PCB 

surface, and (iii) handling of PCB such as figner prints resulting form without use of gloves 

[10]. Among these, the manufacturing process is most important as the other two sources 

of contamination are mostly removed by careful handling and proper packaging. 

Manufacturing process related contamination could again be divided into that originating 

from base PCB manufacturing process and PCB assembling process. Among this PCB 

assembling process is the last process and the use of no-clean flux resulting in a dominating 

factor for contamination.   
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The climatic conditions have a fundamental role in the initial failure process on PCB 

surface. Climatic conditions means level of humidity, temperature, and their variations. 

These two factors can determine the water vapor range that starts to condense on the PCB 

surface. Additioanally, this water consendation is also dependent on the hygroscopic nature 

of ionic residues from soldering process under transient conditions of varying humidity and 

temperature [11]. Therefore, the temperature (T), is another important factor beside pitch 

distance and the contamination for failure creation on PCB surface. Furthermore, 

temperature plays a crucial role in accelerating the corrosion of metallic materials on PCB 

surface [12]. It should be noted that, in this study only the temperature is considered in 

different levels, while keeping the humidity level above the deliquescent humidity level 

proportional to the adipic acid as the only contamination type [13].  

The water layer formation due to pitch distance, ionic contamination remained from the 

soldering process, climatic conditions change, and surface material properties, leading to 

the surface insulation resistance (SIR) reduction on PCB surface if closely spaced biased 

points are connected. The thin water layer formation easily acts as a conductor by making 

electrochemical cells for corrosion failure mechanisms [14]. By applying the voltage, the 

electric field is made through the thin water layer, subsequently leading to corrosion failure 

in the form of dendrite formation due to ECM on the PCB surface. This event will cause a 

sudden increase in the leakage current (LC), resulting in the operational capacity of the 

PCBs. Thus, the voltage (V) is considered as another critical factor that creates a distinct 

potential bias between the anode and cathode, and makes the migration of anodic metal 

ions in the conductive water layer and subsequent deposition at the cathode [15].  

In this study, the pitch distance levels of 300, 600, and 1000 μm as P1, P2, and P3 have 

been considered proportional to actual surface mount devices (SMD) components. As one 

of the important WOAs, adipic acid is studied for all experiments in three contamination 

levels of 50, 75, and 100 μg/cm2 as C1, C2, and C3 matching with typical levels of flux 

residues usually seen after the wave soldering process [16]. The temperature is varied at 

three levels; 40, 45, 50 °C, while keeping the humidity level above the deliquescent relative 

humidity level (98%) for the adipic acid.  Beside, three levels of the voltage have been 

considered for this study, which contained 5, 7.5, and 10 V matching with input voltage 

range of low power components and devices [17]. Figure 6.1 presents the overview of short 
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circuit failure mechanisms between biased points on PCB surface, and critical factors of its 

failure causes. 

 

Figure 6.1 Failure mechanisms and failure causes of short circuit as the main failure mode on PCB 

surface. 

 

Different studies have focused on the effect of climate conditions at various potential biases 

[18], [19], as well as the effect of PCB surface failure and contamination types [20], [21]. 

Nonetheless, only a limited body of research has experimentally investigated failure 

prediction on PCBs [22], [23] while there is no discussion about all of critical factors effects 

and TTF prediction using probabilistic approaches at critical conditions, along with 

combination factors. While the probabilistic approach provides the required methods and 

tools for reliability and risk assessment [24];  it works well in lifetime prediction and the 

estimation of the probability of failure of electronic components as well [25]. For the 

humidity robustness of electronic devices, it is also important to predict and determine 

TTFs. Usually, the probabilistic approaches are applied for the reliability assessment of 

electronics devices, predicting TTFs and quantifying the probability of failures at various 

conditions. 

Accordingly, this study addresses the probabilistic approach of various controllable factors 

influencing the TTF due to ECM on PCB surface, as well as the resulting probability of 

failure (PoF) and risk prediction at various conditions. The outcomes are monitored as an 

evaluation criterion for four appraised and changeable factors of pitch distance, 

contamination, temperature, and voltage, each at low, medium, and high levels. 

Additionally, 98% (RH) and one kind of important contamination (adipic acid) for a 20 

hour experimental period as constant factors are considered on the SIR test boards. The 

effects of factors/levels with five replications in each condition on TTFs and LCs and their 
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relationship are statistically studied in the primary step. Focusing more on pitch distance 

and temperature as the two most significant factors, the best understanding of these two 

factor effects has been obtained on the PCB surface failure. In the next step, using 

probabilistic distribution analysis, the appropriate probability distribution for each 

condition according to three approaches; based on the nature of data, based on probability 

plotting, and analytical techniques have been investigated. Using goodness-of-fit tests (i.e., 

Chi-square, Anderson-Darling, and Kolmogorov-Smirnov tests) and maximum likelihood 

methods, the Weibull distributions as the main distribution for life prediction on the 

accelerated tests compared to other distributions (e.g., exponential and lognormal 

distributions) have been selected on all TTFs. Furthermore, four periods of time, namely, 

highly fast (under 1 hour), fast (between 1 and 4 hours), medium (between 4 and 7 hours), 

and slow (upper 7 hours) to reach the TTF are considered for estimating the PoF for each 

condition. Next, the classification and regression tree (CART) analysis, as a supervised 

machine learning method, is used to classify and predict TTF data based on changeable 

factors. In addition, a multivariate regression analysis is applied to identify a formula that 

can explain how factors influence TTF with deterministic and probabilistic data of every 

21 different experimental conditions. Finally, a combination of statistical, probabilistic 

distribution, multivariate regression, and CART analyses have provided a complete 

understanding of critical factors, levels, and conditions for having the best TTF probability 

prediction knowledge on PCB surfaces. 

6.2 Material and methods 

 Method and experiment design  

The One-factor-at-a-time (OFAT) method is a traditional design in which all factors are 

considered as constant variables, and the only effect of one factor is measured on the 

response [26]. Hence, the conclusion of OFAT experimental results represents the one-

factor behavior effect without any interaction effect [27]. Table 6.1 presents the three 

different levels of each important and changeable factor (pitch distance, contamination, 

temperature, and voltage) with their units and symbols. The constant level of each factor in 

every vertical column (P2, C3, T2, V3) follows up the red color. Further, the horizontal 

rows are displaying the low, medium, and high levels of each factor, and horizontal column 

shows three new conditions at each level. If there are four factors, each of them at three 
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levels, then the number of experiments in the OFAT method will be equal to nine different 

experimental conditions [28]. In other words, 45 experiments in vertical conditions (nine 

different conditions), and 15 different experiments in horizontal conditions (three different 

conditions), besides 10 more experiments for two specific conditions on pitch distance and 

temperature factors due to the existing high effect on responses, have specified (fourteen 

different experimental conditions) in this study. Six out of these fourteen experimental 

conditions (P1a100c45v10, P1a100c50v10, P2a100c45v5, P2a100c45v10, P2a100c50v10, 

and P2a50c45v10, partly retrieved in this study from our previous work [29]. For example, 

P1a100c50v10 represented the low level of pitch distance and the high level of other factors 

(P1 (small pitch distance)- a100 (high level adipic acid as contamination- c50 (high level 

temperature)- v10 (high level voltage)). In two specific experiments only for pitch distance 

and temperature as two most significant factors (instead of the constant condition (C3, T2, 

V3)), another experimental condition with a different level of temperature (C3, T3, V3) is 

investigated for the pitch distance column. Similarly, in addition to the constant condition 

(P2, C3, V3), another condition with P1 (P1, C3, V3) is measured for the temperature 

column. 

 

Table 6.1 Three levels of four critical factors for performing the OFAT experiments. 

Level Pitch Distance Contamination Temperature Voltage 
Horizontal 

Condition 

Low P1 (300 μm) C1 (50 μg/cm²) T1 (40 °C) V1 (5 V) P1, C1, T1, V1 

Medium P2 (600 μm) C2 (75 μg/cm²) T2 (45 °C) V2 (7.5 V) P2, C2, T2, V2 

High P3 (1000 μm) C3 (100 μg/cm²) T3 (50 °C) V3 (10 V) P3, C3, T3, V3 

Vertical 

conditions 

C3, T2, V3 P2, T2, V3 P2, C3, V3 P2, C3, T2 
 

C3, T3, V3  P1, C3, V3  

 

The current behavior as an important indicator is measured to define LC and TTF on the 

PCB surface. Figure 6.2 depicts the general current behavior of the entire experimental 

results, assuming two main parts and specifying two responses. First, there are LCs in the 

SIR reduction part, and second, TTF points in the initial failure part. The SIR reduction 

part (the stable part) is assigned to LC, and the failure part (the unstable region), is referred 

to start the failure process on PCB surfaces with a large jump in LC. The effects of 
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factors/levels on TTFs and LCs and their relationship are statistically evaluated in the initial 

part of the paper, while the modeling part focused only on TTFs predictions. 

 

Figure 6.2 The overall current behavior on exposure to various conditions with the actual pictures 

of the PCB electrodes of two main regions. 

 Specimens, preparations, and test equipment 

SIR comb patterns are commonly used and their measurments is one of the most usual test 

methods  for the process of reliability and quality control [30], [31]. Figure 6.3 displays the 

individual SIR patterns that included three different surface areas and three pitch distances 

made on FR-4 laminate with a thickness of 1.6 mm complying with the IPC-4101/21 

standard. The SIR patterns have three pitch distances namely of 0.3, 0.6, and 1 mm. They 

are proportional to actual distances on a typical PCBA. The dimensions, areas, and pitch 

distances of each SIR pattern are displayed in Figure 6.3. 
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Figure 6.3 The overall view of SIR pattern PCB test boards with three different pitch distances. 

 

In preparation before starting the test, the PCBs are cleaned and then dried by an air 

compressor using a combination of deionized water and isopropanol. Then, each SIR 

pattern is contaminated with the solution of 2.5g adipic acids dissolved in 100 ml 

isopropanol at the concentration of 25g/L. Right amount of this solution was dispensed on 

the surface of SIR patterns using a micropipette and dried in order to obtain contamination 

levels 50, 75, and 100 μg/cm2 matching with typical levels of flux residues usually seen 

after the wave soldering process. Electrical connection to the PCB board is made by hand 

soldering of wires to the electrical contacts on the board.  

All experiments are performed inside the Espec climatic chamber with the tolerances of 

±0.3 °C and ±2.5% RH. In accordance with the adipic acid as contamination during the 

tests, the RH (proportionated with the deliquescence data) kept constant at 98% for the 

experiments.  For each experiment, 1.5 hour period is used in the climatic chamber before 

each test as the stabilization period. A multichannel BioLogic VSP system is used for the 

application of potential (5V, 7.5V, and 10V) and accurate measurement of leak current.   
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 Multivariate regression model  

The multivariate regression model is a mathematical function, which pursues a logical 

relationship between different significant variables by the statistical estimation and the 

analysis of variance (ANOVA) [34], [35]. The multivariate regression model has been used 

for analyzing the statistical significance of four critical factor effects and for determining a 

significant correlation in terms of multiple factors [32].The backward elimination stepwise 

investigation has been performed through multivariate regression analysis for making a 

reduced model on TTFs based on significant factors [33]. 

 Probabilistic distribution analysis 

The probability concept constructs the core of risk and reliability engineering, and the 

probabilistic approach is the key to assess risk and reliability by providing the needed 

techniques and methods [34]. The probabilistic distribution analysis has been used to 

achieve a mathematical function that gives the probabilities of TTFs and estimates the risk 

presented by the various conditions. It initiates with assumptions about selecting an 

appropriate distribution. Usually, three approaches are used to select an appropriate and 

applicable probabilistic distribution. The initial action for selecting the distribution relies 

on the nature of the data. For example, Weibull distribution is generally used to predict 

lifetime at accelerated tests [35]. The second approach is probability plotting as an 

approximate method to provide sensible rationales for choosing the proper distribution. The 

third approach is analytical procedures to determine how appropriate the selected 

probability distribution signifies the data set [36]. Generally, finding a specific distribution 

for various experimental conditions on diverse TTFs is impossible. However, Weibull 

distribution, compared with other distributions (i.g., exponential distribution), is selected 

for TTF data sets at each condition separately. It implies that the exponential distribution 

that is a useful distribution for life prediction in accelerated tests with a single parameter 

(failure rate λ) is unsuitable for these TTF data sets. Moreover, maximum likelihood 

methods and goodness-of-fit tests comprising Chi-square, Kolmogorov-Smirnov, and 

Anderson-Darling tests as an analytical technique have determined the proper fitted 

Weibull distribution on TTF data [36], [37].  

Weibull distribution is one of the most desirable distributions for the continuous event due 

to its flexibility and adaptability for modeling data with a negligible amount of failures. It 
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is specifically used for failure prediction in the accelerated life tests [38], [39]. The Weibull 

distribution offers accurate failure analysis and risk calculations with enormously tiny 

samples without the necessity to crash a few more [40]. The probability density function 

(PDF) of the three-parameter (3P) Weibull distribution is presented as follows [40]: 

f(t) =
β

α − 
(

t − 

α − 
)β−1. Exp[−(

t − 

α − 
)β] 

Where  (theta) is the location parameters, α (alfa) is a measure of the range and the 

characteristic value. Further, β (beta) is the slope or shape parameter, which designates 

whether the failure rate is increasing, constant, or decreasing and follows the following 

roles [41], [42]: 

When β < 1  Determines that the product has a decreasing failure rate.  

When β = 1  Determines a constant failure rate. (exponential distribution) 

When β > 1  Determines an increasing failure rate. (This is typical of products that are 

wearing out, and the property of normal distribution is exhibited when β  3.5) 

 CART analysis 

CART analysis as one of the supervised machine learning algorithms provides insight into 

a wide range of applications such as manufacturing quality control, and the result is applied 

to identify important variables and predict response values [43], [44]. This method as a 

decision tree illustrates important relationships between a response and important 

predictors, in which each fork is split among a predictor, and each end node contains a 

prediction for the response [45]. CART method has been used for creating a predictive 

model of the dependent variable (TTF) based on the independent variables (P,C,T,V). In 

addition, it has been performed through classification as a qualitative prediction at four 

hypothetical periods of time, followed by discussing the regression tree for TTF responses 

as a quantitative prediction in terms of changeable factors in this study. 

6.3 Results and discussion 

 LC and TTF study for each factor 

The behavior of two responses (i.e., LC and TTF from Figure 6.2) in three levels of each 

factor (vertical columns of Error! Reference source not found.), along with the fitted line p

lot, prediction interval (PI), and regression equation on their trends is exhibited in Figure 
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6.4. The figure clearly shows the effect of increasing pitch distance and decreasing other 

factors for TTF response and inverse behavior for LC response. All the experiments were 

conducted in a constant condition with a combination of the medium level of pitch distance 

and temperature factors and the high level of contamination and voltage factors (P2, C3, 

T2, V3) according to Table 6.1.  

 Approximately, by doubling the pitch distance (from P1 to P2), TTF increases about 7 

times (or reducing pitch distance from P2 to P1, TTF shows 7 times decrease). However, 

by doubling the values of voltage (from V1 to V3) the average of TTF decreases about 1.5 

times. Interestingly increase of contamination level (from C1 to C3) showed only little 

change in failure time compared to other parameters. Temperature on the other hand 

showed 8.5 times decrease in TTF for a change of temperature from T1 – T3.  The 

regression equations (shown above the graphs) on TTF trends for each factor at the same 

experimental condition can be used for forecasting the approximate failure time. 

Figure 6.5 shows the comparison of the average of two responses in three levels of each 

factor, as an overview. Generally, the TTF decreases by increasing the LC with respect of 

various parameters because increasing LC represents more dissolution of metallic ions (in 

this case Sn ions), which will assist earlier ECM formation. As shown by Figure 6.5, 

temperature clearly demonstrates greater effect compared to other factors, which shows 

maximum change in LC and TTF. Following this, pitch distance showed significant effect 

on TTF, while LC was not significantly affected. Voltage and contamination showed lower 

effect on LC values, while voltage showed more effect on TTF.   
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Figure 6.4 The TTF values versus three levels of each factor, along with the fitted line plot, 

prediction interval (PI), and regression equation on their trends at the same experimental condition 

for four critical factors included; (a) Pitch distance, (b) Contamination, (c) Temperature, (d) 

Voltage. In addition, The LC values versus three levels of each factor, along with the fitted line 

plot, prediction interval (PI), and regression equation on their trends at the same experimental 

condition for four critical factors included; (e) Pitch distance, (f) Contamination, (g) Temperature, 

(h) Voltage. 
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Figure 6.5 The comparison of the average of two responses in three levels of each factor. 

Figure 6.6 illustrates the Weibull distribution parameters estimated in the Minitab statistical 

software using goodness of fitness tests and maximum likelihood method. Further, it shows 

the probability density function (PDF) of four changeable factors that belong to four 

vertical columns of Table 6.1 with 2000 random number simulations. The TTF distribution 

of pitch distance and temperature effects represent high PoF in the initial time of 

experiments. However, TTF distribution of contamination and voltage show that high PoF 

is in around 7 and 8 hours, respectively. Table 6.2 presents the appropriate distribution 

using goodness-of-fit tests for the pitch distance factor. Similarly goodness-of-fit tests have 

been checked for all other conditions to fit the proper distribution with their parameters at 

different risk values (α). 
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Table 6.2 The goodness-of-fit test summary for pitch distance factor. 

 

Figure 6.6 PDF of TTF for four critical factors. 

The average of TTFs and LCs for each factor, as well as the PoF at four time periods 

(extremely fast under 1 hour, fast between 1 and 4 hours, medium between 4 and 7 hours, 

and slow over 7 hours) based on appropriate Weibull distribution, is provided in Error! R

eference source not found.. The table presents the overall insight of the PoF of each factor 

in similar experimental conditions on PCB surfaces. Generally, pitch distance, temperature, 

contamination, and voltage with three levels of measurement in this study have the highest 

risk of creating failure on the PCB surface, respectively.  Among the individual parameters, 

pitch distance and temperature showed more significant effect compared to contamination 

and voltage. Although, contamination effect is temperature dependant, greater effect of 

pitch distance and temperature shows the increasing reliability issues connected to the 

miniaturization and use of electronics in varying climatic conditions exposing them to 

different temperatures [46], [13].  
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Table 6.3 The PoF summary of critical factors at four hypothetical periods of time. 

Factors Symbol Av.TTF 

(h) 

Av.LC 

(mA) 

PoF under 1 

hour 

PoF 

under 4 

hours 

PoF 

under 7 

hours 

Pitch distance P 5.92 0.003588 17% 48% 66% 

Contamination C 6.53 0.003117 0% 5% 58% 

Temperature T 7.98 0.004127 10% 37% 59% 

Voltage V 8.00 0.003170 0% 7% 39% 

 

 Investigation of vertical experimental conditions 

In order to make the experimental conditions more simplified for analysis, two categories 

of conditions (vertical and horizontal parts) have been defined. The SIR measurement of 

three levels of each factor in conditions (P2, C3, T2, V3, and adipic acid as the only 

contamination at 98% RH for the chosen duration of 20 hours) have been conducted at nine 

different experimental conditions in the vertical part of Table 1.  For example, in the vertical 

part in the second column of Table 1, the three different conditions are explained, 

considering just pitch distance being variable at a fixed condition (C3T2V3). Table 6.4 lists 

the Weibull distribution parameters for the TTF data of the entire factors/levels, along with 

the PoF on four time periods (highly fast, fast, medium, and slow) in vertical experimental 

conditions. This table presents the numerical average values of TTF and LC based on five 

replication experiments, besides Weibull parameters and PoF in the four-time periods of 

each experimental condition. The P1A100C45V10 and  P2a100c50v10 conditions have 

displayed the highest PoF in all time periods. Small pitch distance (P1) in the first condition 

and highest temperature (T3) in the second conditions have a key role in making the risky 

condition on PCB surface. Compared to Error! Reference source not found., Table 6.4 p

resents the details of all factors levels instead of each factor. Figure 6.7 shows the PDF of 

the Weibull distribution for three levels of each factor. It visually displays the probability 

behavior of TTF data for each condition over time.   
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Table 6.4 The probability distribution parameters and the probability of failure for each level of 

each factor at 12 vertical conditions. 

Experiment 

Conditions 

Sy

mb

ol 

Av. 

TT

F 

(h) 

Av. 

LC 

(mA) 

Fitted 

Distribution 

by 2000 

Simulation 

 

β  

 

α 

 

 

PoF 

Unde

r 1 

Hour 

PoF 

Unde

r 4 

Hours 

PoF 

Under 

7 

Hours 

P1A100C4

5V10  

P1 0.8

9 
0.00

373 

Weibull (3P) 0.7744

0 

0.30216 0.6

300

1 

69% 99% 100% 

P2A100C4

5V10 

P2 6.4

7 
0.00

354 

Weibull (3P) 2.4510

0 

6.51270 0.0

748

8 

1% 25% 69% 

P3A100C4

5V10 

P3 10.

40 
0.00

350 

Weibull (3P) 3.8427

0 

10.0280

0 

0.6

298

5 

0% 1% 16% 

P2a50c45v

10 

C1 6.6

8 0.00

239 

Weibull (3P) 8.1824

0 

7.53340 -

0.7

888

2 

0% 2% 73% 

P2a75c45v

10 

C2 6.5

2 
0.00

336 

Weibull (3P) 3.5930

0 

6.33070 0.4

367

9 

0% 12% 68% 

P2a100c45

v10 

C3 6.4

7 
0.00

354 

Weibull (3P) 2.4510

0 

6.51270 0.0

748

8 

1% 25% 69% 

P2a100c40

v10 

T1 15.

57 0.00

174 

Weibull (3P) 4.3158

0 

17.0470

0 

-

0.9

487

6 

0% 0% 4% 

P2a100c45

v10 

T2 6.4

7 
0.00

354 

Weibull (3P) 2.4510

0 

6.51270 0.0

748

8 

1% 25% 69% 

P2a100c50

v10 

T3 1.8

2 

0.00

709 

Weibull 3.7036

0 

1.72750 0 12% 100% 100% 

P2a100c45

v5 

V1 9.9

2 

0.00

293 

Weibull 42.259

0 

9.65760 0 0% 0% 0% 

P2a100c45

v7.5 

V2 7.5

3 0.00

303 

Weibull (3P) 6.4052

0 

8.79980 -

1.2

385

0 

0% 3% 48% 

P2a100c45

v10 

V3 6.4

7 
0.00

354 

Weibull (3P) 2.4510

0 

6.51270 0.0

748

8 

1% 25% 69% 

 

Approximately the average of TTF at similar conditions has increased from P1 to P3. 

However, the LC values represent a uniform behavior with an extremely low and negative 

movement from P1 to P3. The Weibull distribution for TTF estimates the P1 is highly risky, 

especially in a highly fast failure class with a probability rate of about 70%.  

The effect of three contamination levels (C1, C2, C3) of one WOA type on TTF and LC 

has provided the decreasing and an ascending trend from the low to the high level, 

respectively. The high level of contamination has the greatest, but not severe effect on TTF 
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and LC. It is because of more water adsorption by the high level of the contamination (C3), 

which increases surface electrochemical activities (conductivity) by the dissolution of the 

metal ions on the PCB surface. The PoF in C3 also has presented the high value especially 

in the initial hours of experiments compare to other levels (C1, and C2). 

The three levels of the temperature factor at T1, T2, and T3 are shown a completely 

different range of TTFs and LCs. Temperature is the only factor that significantly effects 

the behavior of LC at all levels; since LC has increased about 2 times from T1 to T2 and 

has increased 4 times from T1 to T3. The effect of T3 for creating the failure is about 2 

times and 15 times higher than T2 and T1, respectively. The PoFs in T3 also has presented 

the high value compared to the other levels of temperature.  

The V1, V2, and V3 are considered low, medium, and high levels of the voltage factor. The 

effect of V3 is higher than other levels. In other words, with increasing the voltage level 

(from V1 to V3) at the same conditions, about 3 hours on TTF and about 0.6 micro Ampere 

on LC, changes are obvious. Generally, voltage similar to contamination follows the 

significant shallow effect on responses. The PoF results specifically show the effect of high 

level compared to low level of voltage in the last assumed time period (under 7 hour). 
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Figure 6.7 The probability failure distribution plot for three levels of four critical factors included; 

(a) Pitch distance, (b) Contamination, (c) Temperature, (d) Voltage. 

 Investigation of horizontal experimental conditions 

In the horizontal part, three other conditions with low, medium, and high levels of each 

factor together, have been investigated. Table 6.5 provides the average of TTFs and LCs of 

three different conditions at low, medium, and high levels of the horizontal part of Table 1, 

as well as their probability distribution parameters and probability of failure for each time 

period that is assumed. It can be concluded from the percentages that the combination of 

the low levels of each factor has the highest risk rather than other conditions. It can be 

comprehended that pitch distance has a significant effect in the probability of failure as 

mentioned before. As seen from the vertical conditions, by increasing the V, T, and C and 

decreasing P, the PoF is increased. The conclusion from the horizontal condition approves 

the latter conclusion from the vertical condition. However, the horizontal conditions display 

the important effect of the pitch distance factor, which by increasing the other parameters 
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except for P, the PoF decreases, and the P3a100c50v10 condition has the lowest PoF, and 

the P1a50c40v5 condition has the highest risk.  

Table 6.5. The probability distribution parameters and the probability of failure for each condition 

at the horizontal part. 

Experiment 

Conditions 

 
Av.T

TF 

(h) 

Av.LC 

(mA) 

Fitted 

Distributio

n by 2000 

Random 

Numbers 

β α   PoF 

Unde

r 1 

Hour 

PoF 

under 

4 

Hours 

PoF 

Under 

7 

Hours 

P1a50c40v5 Ro

w1 

7.01 0.0009

10 

Weibull 

(3P) 

2.97

39 

7.04

91 

0.05

538 

0% 16% 62% 

P2a75c45v7

.5 

Ro

w2 

8.06 0.0023

24 

Weibull 

(3P) 

3.07

08 

8.47

68 

-

0.32

717 

0% 12% 47% 

P3a100c50v

10 

Ro

w3 

8.26 0.0046

16 

Weibull 

(3P) 

7.61

77 

7.13

07 

0.83

666 

0% 0% 28% 

 

Figure 6.8 (a) and Figure 6.8 (b) depicts the comparison of the LC average and average of 

TTF versus three different levels of all factors together, as well as the Weibull probability 

density distribution of TTF versus time data for all low, medium, and high levels of four 

changeable factors, respectively. Both TTF and LC demonstrate an increasing trend from 

a low level to a high level. However, the average range of LC change from low to high is 

higher compared to TTF. Row 3 (high level combination of each factor) from the 

distribution plot, exhibits denser TTF data in comparison with other levels, representing 

the TTF dataset with more density and lower scattering in this condition. 

 

Figure 6.8 (a) The average comparison of the LC and TTF versus three different levels of all factors 

together. (b)The probability distribution of failure for three levels of four changeable factors in 

horizontal part. 
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 Comparison of pitch distance and temperature as two significant factor 

According to the results of vertical and horizontal experimental conditions, the pitch 

distance and temperature factors are more significant than other parameters.  Therefore, 

one more experimental condition has been considered for each of them to obtain the best 

understanding of these two factor effects. For pitch distance at the similar contamination 

and voltage levels (C3, V3), and only changes the temperature levels to T3 (50 °C), the LC 

and TTF of three different levels of pitch distance have been measured. Furthermore, the 

average of LC and TTF of three temperature levels on smaller pitch distance (P1) and 

similar contamination and voltage levels (C3, V3) at 98% RH with adipic acid for 20 hours 

have been examined. 

The average of TTF and LC values of three levels of pitch distance at two different 

temperatures (i.e., P1C3T2V3, P2C3T2V3, P3C3T2V3 and P1C3T3V3, P2C3T3V3, 

P3C3T3V3 conditions) display in Figure 6.9. However, the TTF trend at both temperatures 

from P1 to P3 follows an increasing tendency while at the high level of temperature (50 

°C), the average of TTF at each pitch distance is lower than the low level of temperature 

(45 °C). This difference is more than 40, 280, and 160 minutes for P1, P2, and P3, 

respectively.  

The small pitch distance demonstrates the very fast class (under 1 hour) of failure time at 

both temperatures. Besides, the large pitch distance in both temperatures shows the low 

class (upper 7 hour) of TTF. The LC trends for both temperatures also show the same 

decreasing behavior from P1 to P3. For P3, there is a more scatter in the result of TTF 

contrary to P1 experiment owing to a high distance between the two electrodes, therefore 

dynamic formation of water film and connection between both electrodes are more random.  
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Figure 6.9 The average TTF and LC values of three levels of pitch distance at two different 

temperatures. 

 

Figure 6.10 illustrates the average comparison of TTF and LC for the temperature at three 

levels by two different pitch distances. The TTFs of both pitches simultaneously follow a 

similar reducing trend while LCs follow an ascending trend. The difference of TTFs for 

T1, T2, and T3 at P2 is about one and a half hours more than P1. TTF reduction intensity 

from T1 to T3 for P2 is more in comparison with P1. However, LC increasing intensity 

from T1 to T3 for P1 is higher compared to P2, especially at the high temperature level 

(T3). 

 

Figure 6.10 The comparison of two different temperature conditions. 
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 CART and Multivariate regression analysis  

The classification tree using the Gini method in Minitab statistical software as a splitting 

method is applied to gain the best group splits into 70 TTFs data of all experiments. This 

tree considers all multinomial predictors (i.e., pitch distance, contamination, temperature, 

and voltage) at each node, and the calculation for the split improvement amount, results in 

predicted probabilities for terminal nodes at four classes (i.e., highly fast, fast, medium, and 

low). The validation of the classification model has been performed by the k-fold cross 

validation method. It is one of the most popular methods widely used for model validation 

[47], [48]. The 10-fold cross-validation is used to estimate the model performance in 

prediction. The area under receiver operating characteristics (ROC) curve, which is called 

AUC, is one of the important metrics to distinguish the model's performance [49]. ROC is 

a probability curve, which graphically shows the tradeoff between true positive rate 

(sensitivity) and false positive rate (specificity) [50]. The AUC of the average of all classes 

presents 0.93 value, which indicates good classification performance for prediction. Table 

6.6 exhibits the details of the 10-fold cross validation method by minimum 

misclassification tree criteria in training and testing the dataset. The optimal nine nodes by 

minimum misclassification criteria are estimated for all TTF data and has presented in 

Figure 6.11. The node split view of the classification tree (below and left side of Figure 

6.11) presents the condensed view of factors effects to create separate classes. For an 

instant, the most probability of failure (90%) in the highly fast (under 1 hour, the green 

color) situation belongs to the terminal node 3, which follows only two factors of pitch 

distance with less than 450 μm and temperature with higher than 42.5 °C. 

Table 6.6 Model validation by minimum misclassification tree criteria. 
 

Classification Tree 

(10-fold cross validation, and minimum misclassification 

criteria) 

Node 9 

AUC 0.93 

Misclassification rate (Training) 0.23 

Misclassification rate (Test) 0.39 
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Figure 6.11 Classification tree diagram for TTF data with four predictors and classes provided. 

 

The regression tree is employed to visualize and identify the most important predictors and 

discover combinations of predictor settings that are most likely to lead to a lower or higher 

TTF. Figure 6.12 shows a regression tree diagram with seven optimal nodes selected by 

maximun R-sq cretria. Similar to the classification tree, the regression tree works by 

splitting the TTF data into divisions based on the predictor settings that best separate the 

data into identical TTF values.  
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Figure 6.12 The optimal regression tree diagram for TTF response. 

Figure 6.13 displays the ANOVA table of the reduced model on TTF response using the 

stepwise backwared elimination method and the residual plot for TTF dataset that presents 

the normality of residual data and constant variance without following a specific trend to 

emphasize the adequacy of the model. Additionally, the regression equation presented 

below, that can predict the TTF value based on four critical factors. According to the table, 

pitch distance, temperature, voltage, and contamination are the most significant effect. 

Similar to the multivariate regression model on TTF response, another regression analysis 

has been performed on the Weibull distribution parameters estimated for each condition as 

a specific novelty in this study. It means a regression analysis is used to estimate the critical 

factor effects on probabilistic distribution parameters. There are no significant terms for , 

and the regression equation of the probabilistic distribution parameters is made only from 

α and β.  
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Figure 6.13 The ANOVA table, residual plots, and regression model summary for TTF data set. 

 Models validation and interpretation 

The validation of three regression models has been performed by the k-fold cross validation 

method. The k-fold cross validation is commonly used for model validation and model 

selection [51]. Table 6.7 displays the summarizes of the regression models with the 

determination coefficient (R-sq) and the standard deviation of the error between the model 

and experiment on the TTF dataset with 10-fold cross validation. The R-sq is the percentage 

of variation in the response that the model explains, and close to 1 demonstrates how fine 

the data are fitted in the regression model [52], [53]. The table also includes R-sq for the 

training and testing of the TTF dataset. The test R-sq usually gives a better scale of how 

the model works for the prediction [54].  

Table 6.7 The comparison of three regression models. 
 

Multivariate 

regression model  

Probabilistic distribution 

regression model  

Regression Tree 

Model  

R-sq (training) 87% 64% 80% 

R-sq (test)  84% 59% 65% 

error (training) 0.43 0.56 0.37 

error (test) 0.45 0.58 0.51 

 

For examining the models accuracy, as an instance a specific condition (600 μm pitch 

distance, 60 μg/cm² contamination, 46 °C temperature, and 6 voltage) has been investigated. 

The TTF predicted values of (b) the classification tree, (c) the regression tree, (d) the 

multivarious regression analysis, and (e) the probabilistic distribution regression models, 

have been calculated to compare with (a) experimental data of 5 raplications. Table 6.8 

compares the accurate prediction of each model, as well as their comparison with five 

experimental results of TTFs at the instance condition. The prediction interval (PI) is a 
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range that is likely to contain a single future response, and it is used to assess the precision 

of the predictions.  

Table 6.8 The comparison of TTF predictor models together is based on five experimental results 

of one specific condition. 

Prediction Models Note Fitted 

Value 

Lowe

r PI 

Uppe

r PI 

 

 

a. Experimental data of 5 replications 

5.84 

7.09 

8.12 

5.58 

9.96 

 

 

7.32 

 

 

5.58 

 

 

9.96 

 

 

 

b. Classification tree 

 

 

Terminal 

node 

ID=3 

(Medium 

class) 

53% 

probabilit

y of 

medium 

class and 

47% 

probabilit

y of low 

class 

 

 

0% 

 

 

100% 

c. Regression tree Terminal 

node 

ID=4 

7.53 5.58 9.48 

d. Multivariate regression  7.40 2.99 18.28 

 

e. Probabilistic distribution regression 

 

 

Weibull 

distributi

on with 

these 

parameter

s: 

 

α=8.9815

1, 

β=8.2063

0 

With 95% 

probabilit

y, all of 

the TTFs 

in this 

condition 

happen 

under a 

10.27 

hour 

period 

 

 

 

 

 

 

 

 

 

  

 

All the prediction models can correctly forecast the TTF of all conditions between the lower 

and upper PIs. The probabilistic distribution regression model was employed for the 
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probability of TTF estimation. It had straightforward interpretation; however, it was 

challenging to fit applicable distribution on some datasets and had the lowest R-sq 

compared to the other regression models. The regression tree model with 65% test R-sq 

was utilized for visual and fast decisions. It had acceptable accuracy with standard 

deviation variation, which needs more data for its training part for more precision. 

Generally, these models can be selected for each case study according to the dataset, 

accuracy, and prediction limit at various conditions. Nevertheless, the multivariate 

regression model had the best prediction with the highest test R-sq (84%) and lowest test 

error value (0.45) for the TTF dataset. 

 Perspectives on modelling result in relation to humidity effects on electronics  

Given that there are various conditions (combination of different factors and levels) that 

affect TTF due to ECM, different approaches such as probabilistic distribution analysis, 

multivariate regression analysis, and CART analysis have been studied to predict the 

probability of TTF and failure risk prediction on the PCB surface. Comparing with 

literature information on the effect of various parameters on humidity robustness of 

electronics [55], [56], [57], [58]  the models described in this paper are based on the 

combinations of three levels of four critical factors showing the prediction of time to failure 

due to ECM on PCB surface. Moreover, these models that are statistical, probabilistic, and 

machine learning methods have been selected based on the probabilistic predictive 

analytics framework [59]. Therefore, finding the best approach and prediction model can 

give a better perception of PCB reliability, which can be used for preventive measures.  

This study has also evaluated the predictive modelling of TTF and demonstrates that the 

TTF distribution using Weibull provides a better understanding of critical conditions for 

having the best TTF probability prediction based on the results in this paper. The Weibull 

distribution has been utilized in probabilistic analysis since it is most widely used to predict 

life and failure data sets under the influence of multiparameter. Table 6.9 displays the effect 

of each factor in creating different TTF prediction models. The percentage influence of 

pitch distance and temperature in all predictive models is more remarkable than the effect 

of contamination and voltage factors. 
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Table 6.9 The percentage of factors effects on each TTF prediction model. 
 

Multivariate 

regression model 

Probabilistic 

distribution 

regression model 

Regression 

Tree Model 

Classification 

Tree Model 

Pitch distance 46% 47% 39% 31% 

Temperature 35% 26% 44% 28% 

Contamination 13% 21% 9% 23% 

Voltage 6% 6% 8% 18% 

 

6.3.7.1 Effect of pitch distance and temperature 

The effect of the factors concerning the humidity effects are clearly visible in the 

classification and regression tree (Figures 11, and 12), as well as ANOVA table (Figure 

13). The classification and regression tree illustrates pitch distance and temperature as 

significant factors. Since, they have presented the pitch distance and temperature as the 

initial splitters in the top of the trees, which define how the nodes can be partitioned. 

Moreover, the contribution percentage of pitch distance and temperature on the multivariate 

regression model in the ANOVA table have shown the high effect of these factors 

compared to the contamination and voltage. The pitch distance is a significant factor in 

relation to the humidity effect on electronic failures, which is reduced considerably due to 

constant electronic miniaturization for reducing the space of PCB and high component 

density. The importance of pitch distance is due to increasing the electric field, therefore 

making it easy for dendrite formation during electrochemical migration [60], [61]. The 

smaller pitch distance (P1) on the PCB surface can make an electrochemical cell easier due 

to water layer formation between two electrical points. According to the TTF dataset, with 

increasing every 100μm pitch distance, approximately one hour will be increased to the 

TTF. Temperature is found to be a significant factor in causing the failure. Temperature 

can influence the humidity effects in different ways, namely: (i) increasing the absolute 

humidity in the environment to interact with PCB surface, (ii) reducing the deliquescent 

humidity level for contamination and increasing its solubility, and (iii) increasing the 

kinetics of electrochemical process including the deposition process for ECM. For 

condensation, the dew point range and the size of dew droplet formation on the PCB surface 

are affected by temperature [62], [63].   
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6.3.7.2 Effect of contamination and voltage 

As shown in Figure 6.3, Table 6.4, and modelling results, the contamination effect on TTF 

is not as significant as pitch distance and temperature.  However, the effect of 

contamination should be considered together with temperature. It is because when the 

deliquescence occurs, a near saturated solution of contamination to the absorbed water 

forms, which will always remain saturated irrespective of the level of contamination unless 

temperature is different. Therefore, although the contamination on the surface of the PCB 

has changed, concentration in the water layer will not change significantly; hence it should 

not influence the TTF significantly at constant temperature. The voltage in relation to 

humidity also has been shown a low effect on TTF. It might be due to the fact that the 

extent of current, can be passed through the limited thickness of the water layer. Therefore, 

an increase in voltage will not significantly influence the leak current and SIR reduction 

for starting metal ions dissolution and dendrite formation on PCB surface, unless other 

parameters such as P, T, or C change. However, after pitch distance and temperature, 

voltage has also significant effect on TTF, forasmuch as with increasing two times, TTF 

decreases more than 3 hours. 

6.3.7.3 Combined effect of pitch distance, contamination, and temperature 

Comparing the interaction between all three factors together with voltage effect is indirectly 

linked to the pitch distance, temperature play a big role in enhancing the effect of pitch 

distance and temperature due to the factors mentioned above. Kamila et al [64], [65], [66] 

have reported that the hygroscopic nature of residues is determined by the chemistry of 

activating part of flux formation and temperature. An increase of temperature strengthens 

the interaction between the acids and water vapor, leading to high uptake the moisture by 

flux residues. And increase of temperature shifts the critical relative humidity level for 

deliquescence of flux activators towards lower RH range, and the solubility of the residues 

increases. At higher ambient temperatures, the formation of a conductive electrolyte is 

accelerated, and an increase in LC and subsequent electrochemical metal ion migration 

occur at lower RH levels.  
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6.4 Conclusion 

 The consensus of characterizing the critical factors/ levels, probability of failure, 

and failure time prediction modeling have given an extensive insight into the failure 

occurrence on PCB surfaces under humidity.  

 Statistically, the temperature, and pitch distance had the most significant effect on 

TTFs, respectively. They were especially significant in the risky failure period of 

the very fast and fast classes.  

 The importance of pitch distance in significantly decreasing TTF is due to 

increasing the electric field to make easier dendrite formation during 

electrochemical migration. Besides, the temperature importance TTF is because of 

the influence on humidity to alter the dew point range and the size of dew droplet 

formation on the PCB surface, as well as increasing the electrochemical kinetics. 

 Results indicated that by increasing every 100μm pitch distance, TTF 

approximately eighty minutes increased. Moreover, it also increased around eighty 

minutes by decreasing every one-degree centigrade. Nevertheless, the increase of 

TTF by raising every voltage was almost about forty minutes. And for every 

10µg/cm2 enlargement of contamination level, it only showed around 2.5 minutes 

increase. 

 The temperature and pitch distance factors with the large amount and distance rather 

than voltage and contamination factors also had the strongest effect on the LCs. 

Additionally, the combination of small pitch distance (P1) and the high temperature 

level (T3) displayed a critical condition with the highest LC value and failure 

probability percentage compared to other conditions. 

 The classification tree was used for the qualitative estimation of TTFs for a different 

period. It shows a satisfactory probability prediction of the periods and gives an 

excellent and quick insight into the dataset. For instance, the very fast class, which 

shows the critical conditions with happening failure under 1 hour (TTF< 1 hour), 

belongs to only having conditions of low pitch distances and high temperatures (P< 

450µm and T> 42.5°C). 

 From all regression models, the multivariate regression analysis with analyzing the 

statistical significance of factors effects and determining their correlation had the 
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best validation, and prediction with the close value to real data, highest R-sq, and 

lowest error.  
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ABSTRACT- A printed circuit board (PCB) surface can fail by corrosion due to various 

environmental factors. This paper focuses on machine learning (ML) techniques to build 

predictive models to forecast PCB surface failure due to electrochemical migration (ECM) 

and leakage current (LC) levels under corrosive conditions containing the combination of 

six critical factors. The modeling methodology in this paper used common supervised ML 

algorithms by accomplishing significant evaluation metrics to show the performance of 

each algorithm. The conclusion of this study presents those ML algorithms can create 

predictive models to forecast PCB failures and estimate LC values effectively and quickly.  

Keywords: machine learning algorithm, classification, regression, predictive analytics, 

PCB failure, leakage current. 
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7.1 Introduction 

Bulk Today electronic systems worldwide experience several corrosion failure issues due 

to their extensive use under various environmental exposure conditions [1], [2]. Enhanced 

use of power electronics as part of renewable energy systems and electrification of the 

vehicles enhances corrosion problems due to increased exposure to harsh environmental 

conditions as well as the required enhanced performance boundaries, therefore requiring to 

use higher power and bias level on the parts such as PCBs. Main reason for the corrosion 

failure is due to the formation of water film on PCB surface under exposure to humid 

conditions, which acts as connecting electrolyte layer between biased components 

triggering electrochemical failure modes. Multiple factors are involved in such corrosion 

failures, which involve different failure modes caused by electrochemical process resulting 

from water film formation on the PCB surface due to atmospheric humidity and 

condensation [3], [4]. Electrochemical failure modes leads to malfunction of the electronic 

devices as the stray currents caused by the electrochemical process interfere with PCB 

functionality [5], [6]. Two types corrosion failures are important in this respect, namely 

surface leakage current (LC) produced in the connecting electrolyte due to electrochemical 

reactions and subsequent dendrite formation due to electrochemical migration (ECM) 

between positively and negatively biased points causing electrical short circuits [7], [8]. 

Among the several factors involved in causing these failure modes, although effect of 

individual factors can be determined, dependency of the combination of factors are more 

complex, however more realistic to understand in connection with failures in actual 

practice. The combination of critical factors are humidity (H) and temperature (T) related 

to the climatic conditions category (assuming that the electronic device is well protected 

from ingression of aerosols), process related contamination (residues) types existing on the 

PCB surface (CT) and levels (C), pitch distance (P) meaning the distance between 

positively and negatively biased points on the PCB surface, and bias level (V) at the 

concerned area of the PCB. Corrosion failure modes on PCBs under various conditions of 

combination of critical factors like H, T, CT, C, P, and V include failures described above 

such as LC influencing the functionality of a particular component or whole PCB and 

electrical short circuit due to ECM [9], [10]. 

The remedial and preventive action of PCBs failure at an initial stage based on optimization 

of the design, process optimization to reduce contamination, and such protection strategies 
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require predictive analytics approaches to understand the multi-parameter influences [11], 

[12], [13]. Machine learning (ML), as an important technique of predictive analytics, plays 

an important role with the high performance in failure predictive analytics [14], [15]. 

Failure prediction using ML techniques has acquired considerable attention due to its high 

ability to discover patterns and create accurate models to predict future actions [16]. ML 

deal with the issues of how to build and design computer programs that improve their 

efficiency and accuracy for some specific task based on past events or observations [17], 

[18]. There are two main purposes of ML, which include: (i) to predict the dependent 

variable based on independent variables and (ii) to estimate the effect of the independent 

variables on the dependent variable [18], [19]. Generally, ML has three different categories, 

namely supervised, unsupervised, and reinforcement learning [20], [21]. Supervised 

learning is commonly used to build the prediction model that links input data with output 

ones based on many input-output pairs datasets [22]. In other words, supervised learning 

has prior knowledge of the output values for each input variable and tries to learn a pattern 

of the relationship between predictors (input) and response (output) [23], [24]. Learning of 

each algorithm is the process of building itself a model from the training dataset [25]. 

Classification and regression are two categories of supervised ML [26]. The difference of 

the regression from the classification is that its output value is continuous. Therefore the 

regression may be mapped into the classification by discretizing the output value [27]. 

There is much literature on applying supervised classification ML algorithms in different 

applications like wastewater plant, software, aircraft engine reliability, and COVID-19 

effective prediction [28], [29], [30], [31]; as well as there are much literature on using 

supervised regression ML algorithms in diverse requests like healthcare [32], finance [33], 

robotics [34], travel [35], the automotive industry [36], and atmospheric corrosion [37]. 

Furthermore, there are some studies on PCB using ML algorithms have performed like fault 

recognition regarding the PCB glue [38], detection of various types of defects in PCB 

inspection [39], reliability prediction of solder joints failures [40], prediction of solder joint 

health [41], and evaluation of the life prediction effect of ECM on PCB using three 

regression methods [42], which these only used some of the ML algorithms, or they used 

one of the classifications or regression analysis for some limited critical factors and in low 

diverse corrosive conditions. However, none of these works considered LC predictions and 

connected ECM failures in detail. Generally, The ML-based approach for predicting PCB 
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failures has not been considered enough in the past, as ML generally needs enough data 

samples to build efficient prediction models. Data collection is time consuming in relation 

to humidity effects on electronics in order to gather enough data samples suitable for 

machine learning tasks. Therefore, this study has made ML possible by doing many 

experiments to study how ML help in predicting PCB failure status as well as leakage 

current.   

In this work, both classification and regression analysis using most applicable supervised 

ML algorithms included [43]; k-nearest neighbors (k-NN), decision tree (DT), random 

forest (RF), support vector machines (SVM), and deep neural network (DNN) was utilized 

in prediction of short circuit failure mode due to ECM and LC on PCB surface due to 

corrosion process. The 729 different conditions constructed of a 36 complete crossed design 

of three levels of six critical factors; H, T, CT, C, P, and V at 4374 hours experiments runs 

inside a climatic chamber. Surface insulation resistance (SIR) PCBs with interdigitated 

electrodes are used as test boards, pre-contaminated with three weak organic acids 

(WOAs), namely adipic, glutaric, and succinic acids, which are common activators in the 

solder flux used for the PCB manufacturing process. Hence, the presence of these residues 

lead to water film formation under humid conditions and corrosion process assisting final 

failure development, namely LC and ECM. The LC measurement due to electrochemical 

process for all 729 conditions over time showed a pattern of initial stable level followed by 

a sudden jump depending on whether the corrosion process leading to ECM dendrite 

formation and short circuit. The failure conditions in classification and the LC in regression 

categories of the supervised ML algorithms were investigated to determine the best model 

for prediction using F1 score and mean squared error (MSE), respectively, which are 

influential evaluation metrics for classification and regression analysis, respectively [44], 

[45]. The k-fold cross-validation was used to select the best-tuned hyperparameters values 

of each ML algorithm along with grid search approach. The grid search approach has been 

used to set a grid of discrete hyperparameter values based on the metrics for scoring the 

best algorithm performance [46]. Eventually, the applicable predictive model was chosen 

by performance estimation using the 115 new and unseen data conditions in the test dataset. 

The results presented the SVM and RF models for classification with the highest F1 score, 

accuracy, sensitivity, precision, and area under the receiver operating characteristic (ROC) 

curve (AUC) metrics values, as well as DT and RF models in regression with the lowest 
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values of the variety of errors, had the top score as the best models of the test dataset. The 

conclusion of this study presented that the RF model in the training validation, predicting 

both PCB failure conditions and LC values, offered the best results. 

7.2 Materials and methods 

 Experimental data conditions 

The experimental data conditions were obtained from systematic experiments using 

interdigitated SIR PCB surfaces mimicking PCB layout and exposed to various conditions. 

Each condition was made of combinations of one categorical and five numerical factors. 

Each contamination type as a categorical factor has collected 243 different data conditions. 

Each condition is a unique compound of P, C, T, H, V, and CT at 21600 seconds 

measurements. The experimental conditions were designed to cover all conditions with 

three levels of the six critical factors with performing a 36 complete crossed design. In 

general, 729 different conditions of all combinations factors/levels at 4374 hours 

experimental time have been employed to train and validate all supervised ML algorithms. 

Table 7.1 displays the five numerical factors included H, T, C, P, V besides CT as a 

categorical factor, each of them at three levels, along with symbols, values, and units. 

Actually, the aggressiveness increases from level 1 to 3 for all factors except pitch distance 

(inverse) and contamination type (aggressiveness of G(glutaric acid) is more than S 

(succinic acid) and A(adipic acid), and S is more than A). The following segment presents 

a brief overview of selecting the critical factors and levels in this study. 

Table 7.1 Chosen critical factors and levels along with symbols, values, and units. 

Level 
Pitch 

Distance 
Voltage Temperature Humidity 

Contamination 

Level 

Contamination 

Type 

1 P1 (300μm) V1 (2V) T1 (25°C) H1 (78%RH) C1 (25μg/cm²) A (Adipic acid) 

2 P2 (600μm) V2 (6V) T2 (40°C) H2 (88%RH) C2 (50μg/cm²) G (Glutaric acid) 

3 P3 (1000μm) V3 (10V) T3 (55°C) H3 (98%RH) C3 (75μg/cm²) S (Succinic acid) 

 

7.2.1.1 Pitch Distance 

The various demand and the remarkable tendency to miniaturize electronic devices cause 

reducing the space of PCB and high component density [4]. Hence, the pitch distance is a 

significant factor in PCB failure due to the special effect on increasing the electric field 
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power and making it easy for dendrite formation during ECM [47]. Three pitch distances 

of the SIR PCB used are similar to actual component size with electronic industries 

association (EIA) codes; 0201, 0402, and 0603. 

7.2.1.2 Voltage 

The voltage is another critical factor for the electrochemical and corrosion process on PCB, 

which creates the electric field between water film connection biased points, which not only 

cause electrochemical reactions at the biased points but also migration of ions through the 

water film resulting in ECM [48], [49]. The three voltage levels are considered in this work 

following the real range of bias on low power electronic devices and stress direct current 

(DC) voltage standard [48]. 

7.2.1.3 Climatic Conditions 

The climatic conditions have a major role in the PCB failure as it leads to the water film 

formation. It refers to the level of humidity, temperature, and their variations. These two 

factors can determine the condensation range of water vapor on the PCB surface [50]. For 

condensation, the dew point range and the size of dew droplet formation on the PCB surface 

are affected by climatic conditions [51]. Climatic conditions can also influence in 

increasing the absolute humidity (AH) to interact with PCB surface, reducing the 

deliquescent relative humidity (RH) level and increasing solubility for contamination, and 

extending the deposition process for ECM through the increasing electrochemical process 

[52], [53]. The levels of both temperature and RH have proportional with the actual 

environment and deliquescence of solder flux activators [54]. 

7.2.1.4 Contamination 

Cleanliness is an essential issue from the PCB failure point of view. In other words, the 

potential for corrosion occurrence is determined by the PCB cleanliness [55]. The 

detrimental effects of the contamination depend on different factors such as the type of 

contamination (CT), the quantity of contamination or contamination level (C), and the 

location of the contamination [56], [57]. The importance of contamination effects with the 

combination of climatic conditions is to induce water film formation due to deliquescence, 

contributing to the conductivity of the water layer, and depending on the type of 

contamination acting as an aggressive species for corrosion to occur [54]. The main type 
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of contaminations originated from the component assembling process of the PCB 

manufacturing, such as wave and reflow soldering process is related to the use of solder 

flux chemistry containing WOAs [58].  Between wave and reflow soldering process, wave 

soldering contributes higher contamination due to the use of liquid flux and application by 

spraying process. The adipic acid, glutaric acid, and succinic acid as important activator 

WOA compounds are considered in this work, each of them in three levels, which match 

with typical levels of flux residues usually seen after the wave soldering process [59], [60]. 

 Experimental setup 

7.2.2.1 SIR PCB Specimen 

According to the IPC standard testing, SIR PCBs with interdigitated electrodes are 

frequently used for finding climatic effects on reliability, material qualification, service life 

estimation, and evaluating different factors on the PCB surface [61], [62]. Individual SIR 

patterns included three different surface areas, and three pitch distances of 0.3, 0.6, and 1 

mm are shown in Table 7.1. They were made on FR-4 laminate with a thickness of 1.6 mm, 

complying with the IPC-4101/21 standard. 

 

Figure 7.1 SIR PCBs with three different pitch distances and surface area, (a) 300 μm pitch 

distance, with 325 mm2 surface area, (b) 600 μm pitch distance, with 494 mm2 surface area, (c) 

1000 μm pitch distance, with 702 mm2 surface area. 
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7.2.2.2 SIR PCB preparation for testing 

Before starting the experiment, the two electrodes for each SIR pattern are hand soldered 

to two small external wires to connect with the SIR measurement system instrument. The 

PCBs are cleaned and then dried by an air compressor using isopropanol for three times. 

Then, each SIR pattern is contaminated with the solution of one critical WOAs, which is 

made up of 2.5g WOAs dissolved in 100 ml isopropanol at the concentration of 25g/L. 

Three levels of the solution are dispensed on the surface of SIR patterns using a 

micropipette to obtain three levels of contamination. 

7.2.2.3 Climatic chamber for testing and electrochemical system for LC 

measurement  

All experiments are performed using the Espec climatic chamber with the tolerances of 

±0.3 °C and ±2.5% RH. The 1.5 hours stabilization time is considered to be in the climatic 

chamber before each test. The BioLogic VSP with the multichannel workstation (5 

channels) is used to apply bias to the board and measure leak current. For electrodes 

connections set up, two wires were used. One of them from the test board was connected 

to the working electrode, while another electrode was used both for reference and counter. 

7.2.2.4 ML algorithms and designation of their hyperparameters 

Recently, ML techniques are being adopted for a variety of applications of predictive 

analytics [63], [64]. Predictive analytics can include ML algorithms to analyze data quickly 

and efficiently [65]. ML algorithm predicts the outcome based on training input data 

obtained for analytical purposes [66]. The five commonly used supervised ML algorithms 

(k-NN, DT, RF, SVM, and DNN) have been used for both regressions (obtain numerical 

values, e.g., LC values) and classifications (sort items into appropriate categories, e.g., for 

failed or not-failed prediction in various conditions) [43].  

In order to improve the precision and commission of each ML algorithm, there need several 

hyperparameters to tune [67]. Hyperparameters are important individual parameters for 

each algorithm to improve the model's performance, such as its complexity or its learning 

rate, and are commonly chosen based on some insights and trials for the training datasets 

[68]. This study has considered two main hyperparameters of each algorithm that are 

understood to have the most considerable influence on the algorithms' performance [69]. 
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In contrast, for other hyperparameters, the default value is given by scikit-learn ML library 

of Python version 3 [70].  

k-NN is a common supervised ML algorithm that identifies the similar and nearest 

neighbors of an data sample based on the preferences investigation [71]. The k refers to the 

number of nearest neighbors, while the nearest neighbor is a data point that is among the k 

closest data points to the data point under consideration [72]. The weight (W) in k-NN can 

be uniform that points to equal worth/weight given to each neighbor, or distance, which 

alludes to nearer neighbors having more weight than the others.  

Decision tree (DT) algorithm belongs to the tree-based family of supervised ML 

algorithms, which builds decision rules from training data in form of decision nodes and 

leaf nodes branched from its root node [73]. The primary advantage of DT is that it is 

intuitive and easily explainable to the users. DT has two important hyperparameters, 

maximum depth of the tree (mD) and minimum samples (mSS), which is the minimum 

number of samples required to split an internal node.  Random Frests (RF) is a common 

ensemble learning method for classification and regression tasks that operates by 

constructing a multitude of decision trees at training time, where each decision tree works 

on a sample set of the data. RF selects samples randomly and votes or averages over the 

predictions from all the decision trees for classification or regression tasks [72]. The 

number of trees (nE) in the forest and the maximum fraction of data features to be split for 

trees (mF) are the two important hyperparameters affecting the performance of the trained 

models in RF algorithm.  

Support vector machine (SVM) is a supervised ML algorithm that separates different target 

classes using extreme or support vectors to create the hyperplane in multidimensional space 

[74]. Kernel, gamma (γ), and regularization (C) are among the most important 

hyperparameters which directly affect the performance of SVM [75]. Radial basis function 

(RBF) kernel is the most preferred function to make proper separation when there is no 

prior knowledge of data [69]. C is greater than zero and tells the SVM optimization how 

much you want to avoid misclassification [75], where a smaller value of C allows the 

optimizer to ignore points close to the boundary and increases the margin. γ can be between 

0 and 1 and is the influence of a plausible line of separation or the speared of the RBF 

function. Lower γ means less curvature or far away points considered. 
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The artificial neural network (ANN) is a supervised learning algorithm consisting of the 

multilayer perceptron that helps learn complex relations between inputs and outputs. 

Generally, an ANN comprises three layers: the input, hidden, and output layer, each 

containing different neurons (nodes). The term of deep learning comes from having 

multiple hidden layers [76]. The input layer typically contains the independent variables 

that are used to predict the output. The output layer may have a different number of neurons 

based on the target labels/values [77]. The hyperparameters in the deep neural network 

(DNN) algorithm include the number of hidden layers (hL) and the number of nodes or 

neurons in each hidden layer (nN). 

7.2.2.5 Evaluation metrics for ML algorithms 

The evaluation metrics are used to assess how well ML algorithms have performed the 

training and testing of the dataset. Moreover, the evaluation metrics by comparing the 

difference between the model prediction and actual experimental data can measure the 

accuracy of each model [43]. Four commonly used evaluation metrics for classification 

include F1 score, precision, sensitivity, accuracy, and area under the receiver operating 

characteristic (ROC) curve (AUC). i.e., accuracy as an instinctive performance is measured 

using the confusion matrix. It is defined as the ratio of correct predictions to all 

observations. Similarly, four applicable metrics while predicting continuous variables have 

been utilized for regression analysis. These include mean squared error (MSE), root mean 

squared error (RMSE), mean absolute error (MAE), and mean absolute percentage error 

(MAPE). However, for unsophisticated selection of the best ML algorithm, F1 score and 

MSE as important evaluation metrics using the grid search approach have been employed 

for classification and regression, respectively. F1 score can be interpreted as a harmonic 

mean of precision and sensitivity. The best F1 score reaches 1, and the worst score at 0. In 

the regression, the best values, as well as best ML algorithms, have been obtained from 

comparing the MSE from 0 to 1, which the lower value indicates lower errors between 

predicted and real values and thus a better algorithm [78], [79].  The supported criterion 

hyperparameter for regression is also by default considered mean squared error (MSE), 

which is equal to variance reduction. Table 7.2 illustrates different metrics for both 

classification and regression, which can be acquired from the formulas [80], [81]. 
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Table 7.2 Overview of different evaluation metrics and formulas for classification and regression 

supervised ML algorithms. (TP: true positive, FP: false positive, FN: false negative, TN: true 

negative, n: total number of the samples in the dataset, 𝑦𝑖: 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑣𝑎𝑙𝑢𝑒,

𝑦𝑖
^: 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 ) 

Classification Regression 

Metrics Formula Metrics Formula 

F1 score 
2TP

(2TP + FP + FN)
 MSE 

1

𝑛
∑(𝑦𝑖 − 𝑦𝑖

^)2

𝑛

𝑖=1

 

Accuracy 
(TP + TN) 

(TP + FN + FP + TN)
 RMSE √

1

𝑛
∑(𝑦𝑖 − 𝑦𝑖

^)2

𝑛

𝑖=1

 

Precision 
TP

(TP + FP)
 MAE 

1

𝑛
∑|(𝑦𝑖 − 𝑦𝑖

^)|

𝑛

𝑖=1

 

Sensitivity 
TP

(TP + FN)
 MAPE 

100%

𝑛
∑ |

(𝑦𝑖 − 𝑦𝑖
^)

𝑦𝑖
^ |

𝑛

𝑖=1

 

7.3 Results and Discussion 

 Results of humidity testing: leak current data and electrochemical migration 

failure  

Using interdigitated PCB test structure, two responses resulting from exposure to various 

corrosive conditions are investigated for failure, namely the LC resulting from the corrosion 

action as well as the failure due to ECM. The LC consequent from SIR reduction due to 

electrochemical process occurring between two water film connected electrodes due to the 

influencing factors such as  electric field (based on bias level and pitch distance),  flux 

residues (from the soldering process),  and climatic conditions factors such as temperature. 

The failure status due to ECM is formed by begetting conductive electrolytes between two 

electrodes, besides the dissolution of anodic metal ions and migration then deposition at 

the cathode due to the bias condition, finally leading to short circuit.  Figure 7.2 illustrates 

the typical electrochemical current behavior as an important indicator to define LC levels 

due to initial current leaking through the water layer and dendrite formation current due to 

ECM. Curves represent failure conditions of the three contamination types in the same 

corrosive conditions, including P2, C3, V1, T3, and H3, with three different magnitudes, 

specifying two responses. First, there are LC before dendrite formation (show with yellow 

upward arrows) used for regression supervised ML modeling, and second, failure state due 
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to dendrite formation (show with green downward arrows after the sudden jump) used for 

classification supervised ML modeling. The LC is assigned to the stable part, and the failure 

part is referred to initiate the process of failure on SIR PCB surfaces with a considerable 

jump in LC due to dendrite formation bridging between conductors (examples in Figure 

7.3). The threshold of around 100 μA for this state is defined for the present analysis, which 

is detected for the ECM and dendrite formation. This value of current is commonly 

accepted as the threshold for failure due to ECM. This figure also clearly shows, in overall 

glutaric acid, succinic acid, and adipic acid due to being the relative difference in 

aggressivity of contamination, respectively, having varying LCs and failure times due to 

ECM [82], [83]. Among these contaminations, Glutaric acid is more aggressive due to its 

deliquescent relative humidity (DRH) value and high solubility in water film due to higher 

dissociation constant followed by succinic acid, and adipic acid [84], [85]. Glutaric acid 

has DRH in the range of 80-87%RH for a temperature range of 25-60°C, while values for 

adipic and succinic acid for the same range of temperature are around 83-99%RH and 81-

95%RH, respectively [54], [82], [83], [86]. Table 7.3 displays the snippet of the 

experimental data results with the average of LC and failure state in each condition gathered 

by such kinds of the graphs from Figure 7.2 and used for the ML modeling part in the next 

section. Figure 7.13 and Figure 7.14 in the appendix present all experimental data results 

for the LC values and failure state at each condition, respectively. 
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Figure 7.2 Typical leak current behavior in the same corrosive condition to define two responses 

(LCs and failure state) for supervised ML algorithms of three contamination types; adipic acid 

(black), glutaric acid (red), and succinic acid (blue).   

 

Table 7.3 Snipped of the experimental data results with the failure state and average of LC in each 

condition constructed of a combination of CT, P, C, V, T, and H factors at different levels. 
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Figure 7.3 shows the typical surface view of test PCB showing permanent dendrite filament 

between two electrodes on SIR PCB surface when applied corrosive conditions (P2, C3, 

V1, T3, and H3) for three different contamination types (the current measurement curves 

of them are shown in Figure 7.2) using a digital microscope at ex-situ for the optical 

inspection of dendrite formation (failure state) as an example. Pictures in Figure 7.3 shows 

ECM dendrite formation for all contamination types due to the higher humidity, 

temperature and contamination level, while succinic and adipic acid shows less 

susceptibility for the formation of dendrite at lower humidity, temperature and 

contamination levels. In general, tendency for formation of ECM increases with increasing 

aggressivity of conditions (shown in Table 7.1) namely increase in bias, contamination 

level, temperature, humidity and decrease in pitch distance. This is also clear in snipped 

data shown in Table 7.3, which shows lower LC values and no-failed conditions for less 

aggressive contaminations (succinic and adipic) and in general for low bias, temperature, 

humidity and high pitch distances.  

 

Figure 7.3 Optical appearance of dendrite formation and ECM on P2 (600μm) SIR PCB surface 

before and after exposure to C3 (75μg/cm²), V1 (2V), T3 (55°C), and H3 (98%RH) for (a) before 

exposure and clean PCB, (b) contaminated by adipic acid, (c) contaminated by glutaric acid, (d) 

contaminated by succinic acid. 
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 Validation and hyperparameters tuning of ML algorithms 

The training set is automatically divided into two parts; training and validation dataset. 

Selecting the validation method usually depends on the dataset size and is categorized into 

three methods; leave one-out cross-validation (small sample size), K-fold cross-validation 

(moderate sample size), and validation with test set (large sample size) [87]. This study has 

used K-fold cross-validation with having K equal to 5 for all algorithms. In 5-fold cross-

validation, the training dataset is separated into five subsets, of which four subsets are for 

training an ML model, and the fifth subset evaluates the quality of the trained ML model. 

This means that this method uses 20% of the data for testing, and this is usually very 

accurate.  This procedure has been repeated five times, choosing different subsets for 

validation [88]. 

The grid search approach is a common technique for hyperparameters tuning [89]. It 

searches exhaustively through the grid for each set of hyperparameters and evaluates each 

algorithm score based on an evaluation metric (F1 score, MSE, etc.). This approach 

methodically selects the best combination of hyperparameters ranges values in a specific 

mixture grid [46]. 

 ML algorithms setup 

All of the experimental results obtained from 729 different conditions have been used for 

the training set of five different ML algorithms in classification analysis to predict failed 

or not-failed conditions. We use all not-failed data samples for regression analysis to 

predict LC values which is around 71.5 % of all data means 521 conditions. We only use 

not-failed data in our regression task, as LC values were obtained from the initial part of 

the current measurement in the stable part before the failure [90].  

Table 7.4 shows two hyperparameters of each algorithm that have been assigned at different 

levels. Combining different values for each hyperparameter of Table 7.4 gives 100 separate 

combinations for SVM, DT, and RF algorithms, 20 combinations in the k-NN, and 84 

combinations in the DNN algorithm. We used grid search to select the best value of each 

hyperparameter, giving the best models trained by each algorithm. 
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Table 7.4 Hyperparameters and their ranges of the studied ML algorithms. 

 

Once the best set of hyperparameters for each ML algorithm is selected by the grid search 

and the 5-fold cross validation, the best trained model of each algorithm was chosen for 

predicting the test dataset. Our test dataset consists of 115 unseen data samples with new 

conditions of combinations of six critical factors, which have not been in the training 

dataset used by grid search. Figure 7.4 generally shows our overall pipeline for finding the 

best machine learning models of both classification and regression tasks. The next section 

displays the visual comparison of different range values of all ML algorithm 

hyperparameters to select the best values. 

 

Figure 7.4 General pipeline for building the applicable predictive model and performance 

estimation in ML. 
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 Evaluation of trained ML algorithms for classifying PCB failures   

Figure 7.5 describe the results of the 5-fold cross-validation of each ML algorithm with 

different hyperparameters for classification task. The 5-fold cross-validation randomly 

divides the dataset into 5 sets of approximately equal size, then the first fold is kept for 

testing and the model is trained on 4 folds to reduce the data bias and the variance of the 

result estimation. We used F1 score as comparison metrics in grid search for classification. 

Figure 7.5 (a) compares F1 score attained by k-NN classification algorithm with different 

values of K and W where each diagram represents a W value. The figure illustrates a shape 

similar to the parabola downwards curve that F1 score first increase and then decrease by 

increasing the K values. K equals 5 represents the climax of F1 score. 

Figure 7.5 (b) compares F1 score acquired by DT classification algorithm with diverse 

values of mD and mSS where each diagram characterizes an mSS value. The figure displays 

that F1 score increase entirely by increasing the Md values. The F1 score for the mD≤5 are 

the same, and after that mSS equal 7 shows the highest F1 score for all mD values. 

Figure 7.5 (c) also compares F1 score obtained by RF classification algorithm with different 

ranges of nE and mF where each diagram describes an mF value. The figure at a glance 

indicates similar effect of the mF and nE ranges upon the F1 score. Since, F1 score for all 

the 100 set of different values of mF and nE presents the very close value between 0.92 to 

0.96. 

Figure 7.5 (d) compares F1 score achieved by SVM classification algorithm with different 

values of γ and C where each diagram represents a γ value. The figure shows that F1 score 

increase by incrementing C for all γ values especially for γ>0.05 and converges with 

C>300. 

In order to simplify the presentation of 84 different combinations of neurons in four hidden 

layers in Figure 7.5 (e), for comparison F1 score, we have dedicated 84 numbers for each 

combination. Table 7.7 in the appendix shows the arrangement of the neurons and hidden 

layers with dedicated numbers. Comparison of the number of hidden layers combined with 

how to arrange the neurons for each layer allocates the different values of F1 score. For 

instance, N equals 83 presents a DNN structure of 3 hidden layers (hL) in order of 20 

neurons for the first hL, 20 neurons for the second hL, and 15 neurons for the third hL. The 
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N is used to enumerate the available DNN architectures, and it is not a hyperparameter. The 

figure demonstrates that generally F1 score achieved by DNN classification algorithm 

increase with increasing the complexity of the neural network (number of neurons and 

hidden layers (L)) although the F1 score converges between 0.91 to 0.93 even in more 

complex networks. 

 

Figure 7.5 Performance diagrams of classification (a) k-NN algorithm, (b) DT algorithm, (c) RF 

algorithm, (d). SVM algorithm, and (e) DNN algorithm on the training dataset of PCB failure 

classification for different values of the hyperparameters. (K: the number of neighbors, W: the 

weight of each neighbor, mD: the maximum depth of the tree, mSS: the minimum samples needed 

to split an internal node, nE: the number of trees, mF: the maximum fraction of data features to be 

split for trees, C: the misclassification or error term, γ: the influences of plausible separation, N: the 



Chapter 7 

151 

 

number of each combination of neurons and layers based on Table 7.7 (N is not a hyperparameter), 

hL: the number of hidden layers). 

 Evaluation of trained ML algorithms for estimating LC values   

Figure 7.6 expresses the results of the 5-fold cross validation of each ML algorithm with 

different hyperparameters for regression analysis. We used MSE as comparison metrics in 

grid search for regression analysis. Figure 7.6 (a) compares MSE achieved by k-NN 

regression with different values of K and W where in contrast to Figure 7.5 (a) presents 

MSE decrease and increase from K equal 5. The distance hyperparameter compared to the 

uniform displays a slightly better function in both classification and regression. 

Figure 7.6 (b) compares MSE earned by DT regression algorithm with various values of 

mD and mSS, where each diagram characterizes an mSS value. The figure displays MSE 

decrease by increasing the mD until 5 value, then the uniform behavior for each mSS range. 

The figure shows the lowest mSS values offer the lowest MSE amount. 

Figure 7.6 (c) also compares MSE obtained by RF regression algorithm with different 

ranges of nE and mF where each diagram describes an mF value. Similar to Figure 7.5 (c), 

this figure only displays the mF and nE ranges effect upon the MSE. 

Figure 7.6 (d) compares MSE achieved by SVM regression algorithm with different values 

of γ and C where each diagram represents a γ value. The figure shows that MSE decreases 

by incrementing C for γ<0.01, and for others is approximately uniform. 

Figure 7.6 (e) also used Table 7.7 for simply present to compares MSE obtained by DNN 

regression algorithm with different combinations (84 different assortments) of neural and 

hidden layers. This figure shows MSE in 2, and 3 hidden layers approximately give the 

same value; however, increasing the number of neurons/nodes decreases MSE values. For 

instance, according to Figure 7.6 (e) and Table 7.7, the best MSE value (lowest one) 

belongs to number 20, which represents the combination of two layers wherein each layer 

exists highest neurons/nodes ([20; 20]). 
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Figure 7.6 Performance diagrams of regression (a) k-NN algorithm, (b) DT algorithm, (c) RF 

algorithm, (d) SVM algorithm, and (e) DNN algorithm on the training dataset of LC regression for 

different values of the hyperparameters (Refer to Figure 7.5 captions). 

 Selection of the best trained ML models 

Generally, the best k-NN model obtained from the set of K equals 5 with uniform as a 

weight hyperparameter for classification and with distance as another weight 

hyperparameter for regression. DT and RF models demonstrated the very close values of 

F1 score and MSE for each set of their hyperparameters at various ranges, which average 

of the metrics values compared to other models for both classification and regression give 

us the bests on them. The high ranges of the γ and low ranges of the C gave the highest F1 
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score and lowest MSE for SVM model. The best DNN model also illustrated the significant 

effect of neurons numbers in all hidden layers. Table 7.5 includes the optimum set of all 

hyperparameters for each studied ML algorithm, where a list of values of hyperparameters 

as well as the performance achieved is reported. We considered maximum of F1 scores for 

classification and minimum of MSE values for regression to select the best models. 

Table 7.5 Best values for each ML algorithm were obtained from 5-fold cross-validation of training 

data.

 

Figure 7.12 in the appendix, visually shows the recap of  Table 7.5, which contains the best 

models of each studied algorithm for both classification and regression tasks. The RF was 

found as the best ML algorithm among this study with F1 score of around 0.96 ± 0.01 for 

prediction of PCB failure (Table 7.5 and Figure 7.12). Moreover, in LC values prediction, 

DT with about 0.0001 MSE difference of RF was seen as the best ML algorithm for 

regression analysis with 0.0002 ± 0.0002 (Table 7.5 and Figure 7.7). Nevertheless, there is 

no significant difference between all ML algorithms on the training dataset for both 

classification and regression analysis. In other words, the results show that ML algorithms 

are able to learn the distribution of our data and effectively predict failures of PCB boards 

as well as estimating the LC values. Therefore, the best of each algorithm has been used to 

predict of test dataset for finding the accuracy and performance of all applicable predictive 

models in the next section.  

 Evaluating the best-trained models 

We use the test dataset to evaluate the performance of the best-selected trained model by 

each ML algorithm. The test data set comprised 115 new conditions of the mixture of 

different levels of the six critical factors. 
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Table 7.8 in the appendix displays the different levels of the test dataset, which have been 

used for making other different conditions for test data, and those have not been used for 

the training in the ML algorithms. It is because of having the actual estimation of the 

accuracy and proficiency of the applicable predictive ML algorithms. Figure 7.7 presents a 

confusion matrix achieved by each algorithm showing a summary of the classification 

results. All our classification performance metrics (i.e. F1 score, AUC, accuracy, 

sensitivity, and precision) can be calculated from the confusion matrix. 

 

Figure 7.7 Overview of the confusion matrices for assessing the classification accuracy of a) SVM 

algorithm, b) k-NN algorithm, c) DT algorithm, d) RF algorithm, and e) DNN algorithm on test 

dataset to predict failure on PCB surface. 

According to Figure 7.7, SVM model in the F1 score, accuracy, and precision metrics have 

provided the highest values, and the RF model in AUC and sensitivity has given the best 

amounts. We prefer the F1 score over other metrics because it is effective for imbalanced 

datasets [91], and our test data consists of 76% failed and 24% Not-failed conditions, which 

is an imbalanced dataset. After F1 score, AUC with the highest value represented the best 
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predictive model [92]. Figure 7.8 compares ROC curves and AUC of the best-trained model 

by each algorithm. 

 

Figure 7.8 ROC curves for different ML algorithms. 

Table 7.6 compares MSE, RMSE, MAD, and MAPE of our studied regression algorithms 

to find the best ML model for LC predictions. The k-NN and the DNN models have the 

lowest MSE and RMSE and high MAD and MAPE values compared to others except for 

SVM. However, RF and DT have the lowest MAD and MAPE values. There is no 

significant difference to the MSE and RMSE values for whole models and they are 

following the same magnitude. Kernel density estimate (KDE) plot in Figure 7.9 clearly 

shows that the predictions of LC values are obtained through different ML algorithm’ 

compared to real LC's averaging in experimental measurement. The KDE plot is used for 

visualizing the density distribution of the real mean of LC and the predicted values [93]. 

Based on comparisons of Table 7.6 and Figure 7.9, it can be concluded that the RF and DT 

models have demonstrated better prediction according to the test dataset in this study. In 

other words, density of predicted LC Mean closely follows the density of real LC values 

for RF (Figure 7.9 (e)) and DT (Figure 7.9 (d)) in comparison with other studied regression 

algorithms. Figure 7.10 presents the overview of the best ML algorithm of the testing 

dataset according to the F1 score and AUC metrics for classification, as well as MSE and 

MAD metrics for regression. 
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Table 7.6 Comparison of the regression metrics on the test dataset. 
 

k-NN DT RF SVM DNN 

MSE 0.0019 0.0028 0.0021 0.0022 0.0019 

RMSE 0.0436 0.0532 0.0462 0.0465 0.0432 

MAD 0.0004 0.0001 0.0002 0.0137 0.0038 

MAPE 37.46 2.51 3.78 1236.21 611.06 

 

 

 

Figure 7.9  KDE plots for each algorithm comparing the density of real and predicted LC values; 

(a) SVM algorithm, (b) k-NN algorithm, (c) DNN algorithm, (d) DT algorithm, and (e) RF 

algorithm. 
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Figure 7.10  Overview of the best ML algorithm of the testing dataset according to; (a) the F1 score 

and AUC metrics for classification, as well as (b) MSE and MAD metrics for regression, as the 

most significant metrics. 

 Overall discussion  

ML has gained a lot of attention because of its ability to effectively solve complex problems 

across various industries. This study aims to create a generalized ML model for predicting 

PCB failure and LC values based on the input conditions combining six critical factors (i.e. 

pitch distance, contamination level, temperature, humidity, voltage, and contamination 

type). The results of our study on common ML algorithms prove that well-trained ML 

model can efficiently forecast failures of a specific PCB provided that the PCB is exposed 

to a condition where relevant descriptors are known. Predicting failures under known 

conditions is very much useful for pro-active design strategy for PCBs to increase 

robustness to prevent failure in exposure to critical conditions. As another anchor of this 

paper, LC prediction can be used to estimate the possibility of failure or even time to failure 

if we could find the correlation between LC and failure in different applications. 

Comparing with the number of failures conditions on the SIR PCB surface at the same 

condition except for different CTs, the models based on machine learning had a satisfactory 

prediction performance even with the limited training dataset. For instance, the experiments 

indicated that glutaric acid compare to other CTs has a high number of corrosion failure 

conditions in the same corrosive condition on PCB surfaces, that ML models also 

emphasized it and could precisely predict different new conditions.  

We followed two main steps for training and testing our predictive models: 1. Training and 

validation where we build predictive models using common ML algorithms (k-NN, DT, 

RF, SVM, DNN), and use validation data to find best trained models, and 2. Testing is our 
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final evaluation of the best trained models using new input data (conditions) which have 

never been seen by the algorithm during the training procedure. Both regression and 

classification tasks were used as a trade-off between the model's inference and the model's 

complexity to avoid underfitting and overfitting. Underfitting occurs when a trained model 

is too simple to capture the relationship between the input and output. Overfitting occurs 

when the model has been overtrained and is good at predicting training data while at the 

same time showing high errors in predicting new test data. 

The RF model in evaluating trained ML algorithms for classifying PCB failures with 

around 0.96 F1 score and estimating LC values about 0.0003 MSE illustrated the best-

trained ML algorithm. Furthermore,  in validating the best-trained models based on the test 

dataset, RF for failure prediction with 0.87 F1 score and highest AUC and for LC prediction 

with 0.0021 MSE presented one of the best models, which can be used for both 

classification and regression analysis.  

Figure 7.11 illustrates relative factor importance in classification and regression analysis 

according to the best ML model selected. The humidity factor has a major effect in both 

analyses (classification for ECM and regression for LC). Humidity is the key factor causing 

water film formation on the board, which is required as a medium for causing 

electrochemical failure [94]. Humidity factor is also important in connection with 

contamination effects as the hygroscopic nature of the ionic residue (e.g. adipic, succinic 

or glutaric acids) represented by the DRH value reduces the humidity level required for 

water film formation on a PCB surface under transient climatic conditions. This observation 

is in agreement with the combined effect of humidity, and contamination types resulting 

from flux residue are reported in the literature [94], [95], [96], [97], [98]. However, it is 

interesting to note that the contamination level for LC (Figure 7.11 (b)) shows significant 

effect, while less for classification (ECM) in Figure 7.11 (a). This is attributed to the fact 

that contamination level provides conductivity for the water film to produce LC, therefore 

triggering electrochemical process, while the ECM depends on the amount of metal ion and 

migration to cathode, which is independent of contamination level. Contamination type has 

significant effect on ECM failure meaning that more aggressive contamination (e.g. glutaric 

acid) caused more ECM failures [54], [82], [84]. This is due to the increased acidity and 

aggressiveness of solution due to the high solubility of glutaric acid, therefore resulting in 

increased tin ion dissolution for migration. It has been reported that among the acid testing, 
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glutaric acid cause high levels of ECM above ~85% humidity level [54], [82], [99]. 

Similarly, although voltage shows less effect on both ECM failure and LC, while pitch 

distance showed more significant effect due to increased electric filed with bias levels. This 

is significant especially in connection with miniaturization for which reduction in 

component sizes and distances cause higher electric field [100], [101]. Temperature is 

effect is also significant for LC (regression), which is due to two factors namely: (i) 

reduction in DRH level for contaminations and (ii) increased solubility of acids giving 

higher conductivity. Kamila et al. have extensively investigated the combined effect of flux 

residue contaminations, temperature, and humidity conditions, which showed significant 

reduction in DRH values, increase in water absorption capability of contaminations, LC, 

and ECM susceptibility with increase in temperature [83], [85], [102], [103]. Overall 

relative factor importance from the ML analysis fit with experimental observations not only 

from the theoretical point of view in connection with humidity caused electrochemical 

failures in electronics, but also the reported experimental results in the literature.  

 

Figure 7.11 Relative factor importance in both; (a) classification (failure state), and (b) regression 

(LC) analysis. 

7.4 Conclusion 

The study presents how machine learning is able to forecast corrosion failure on PCBs 

based on experimental data set. Using classification for predicting failure status in the form 

of Failed and Not-Failed labels, the PCB failures are adapted into a binary classification 

problem and then solved by the classification task. Relative factor importance of both 

classification and regression shows the importance of various influencing factors in 

agreement with experimental observations.  Further, given that many corrosive conditions 

are combined with various factors/ levels that affect the PCB failure, use of well-trained 
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ML algorithms in both classification and regression can be used as a tool to predict failure 

status and LC values reducing the number of experiments needed at different new 

conditions. 

All ML algorithms in the training dataset showed suitable learning in both classification 

and regression. According to the results, the F1 score for all ML algorithms were between 

0.71 to 0.96. Moreover, AUC, as another significant metric, could present a value of more 

than 0.9 in all of them. In addition, for classification, the range value of MSE was between 

0.01 to the best value of 0.0002, which showed the acceptable error for all ML algorithms.  

High performance in both classification and regression shows that ML is interesting for 

predicting failures of PCBs as well as estimating the LC values. We believe that there is 

room for more accurate ML models with higher number of experiments (conditions). Based 

on our evaluation, SVM and RF algorithms could achieve the highest scores (F1 score, 

AUC, accuracy, sensitivity, and precision) for predicting PCB failures under different 

conditions of critical factor combinations.  

Our study shows that DT and RF regression algorithms could achieve the lowest values of 

errors on the test dataset. The RF algorithm could train the most effective model with high 

performance in predicting PCB failure as well as LC values as the best classifier and 

regressor, respectively.  
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Appendix 

Table 7.7 Arrangement of the hidden layers (hL), and number of neurons/nodes (nN), which 

illustrated with numbers (N) from 1 to 84 in Figures 5(e) and 6(e) for better visualization. 

 

 

Table 7.8 Various levels of six critical factors to make new conditions for test dataset. 
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1 Adipic acid 300 2 25 78 35 

2 Glutaric acid 600 3 35 88 50 

3 Succinic acid 1000 5 40 90 75 
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Figure 7.12  Overview of the best ML algorithm of the training dataset according to the F1 score 

and MSE metrics. 
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Figure 7.13 All experimental conditions combined P, C, V, T, and H factors, each at three levels 

(1, 2, and 3 based on Table 1) versus the average of LC values for (a) adipic acid (A), (b) glutaric 

acid (G), (C) succinic acid (S). 
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Figure 7.14 All PCB failure classification data results under various conditions combined with P, C, V, 

T, H, and CT factors, each at three levels. The red and blue colors present the Not-failure and Failure 

conditions, respectively.  Each cell (box or rectangle) presents a condition merged of six factors at 

different levels. For instance, the cell marked with a light blue dotted line displayed a failure condition 

constructed of P1C1V1T2H1, G, i.e., low level of pitch distance (P1=300µm), low level of 

contamination level (C1=25μg/cm²), low level of voltage (V1=2V), medium level of temperature 

(T2=40°C), low level of humidity (H1=78%), and glutaric acid (G) as a contamination type.
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8 Overall discussion  

This chapter covers a brief discussion combining the investigations presented in the 

appended papers. Overall content in this thesis shows that predictive analytics involving 

proper data analytics process, from data gathering to make suitable decisions for improving 

actions based on appropriate and applicable prediction models can be developed for 

humidity related failures on electronics. Method provides better visualization of multiple 

parameters effect, which important to understand as the failure cause of combination of 

effects rather than single parameter. Presently the models developed in this thesis is based 

on testing using simple interdigitated PCBs without component, however similar 

methodology can be applied for more complex PCBs with components, which will be more 

useful. Finally, combining field failure data into analysis provide the possibility of 

correlating multi-parameter lab test data models to field failure models.  

In this Ph.D. project, the SIR PCB surfaces were exposed to various conditions combined 

with different important and controllable factors, including; pitch distance (P), 

contamination level (C), temperature (T), voltage (V), humidity (H), and contamination 

type (CT), with different levels. This is performed inside the climatic chamber, and DC SIR 

testing measured current values as a main indicator by the potentiostat to investigate the 

failures on PCB surfaces such as SIR reduction and LC, as well as TTF due to ECM and 

dendrite formation, then predict them using predictive analytics approaches. Moreover, the 

role and sensitivity of each factor and their interactions with PCB failures have been studied 

using statistical investigations by applying DoE and OFAT design methodologies. 

The combination of critical factors at different levels as well as evaluation of their 

interactions simultaneously on the SIR PCB surface, is shown a new understanding for 

carrying out proper design of experiment, simulation, and prediction model close to 

realistic conditions, to create a comprehensive understanding of the effects of different 

factors/levels on PCB failure once exposed to different conditions. The H factor 

significantly influences both classification analyses for failure status prediction due to 

ECM and short circuits, as well as regression analysis to predict the numerical value for 

LCs. H is an important factor in climatic conditions causing water layer formation on the 

PCBA surface. It is connected with CT effects as the hygroscopic nature of the activators 

in the flux ionic residue. The experimental results are indicated the proportionally 
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combined impact of H and CT as a consequence of flux residues on PCBA surfaces. CT 

has a considerable impact on ECM failure indicating that more aggressive contamination 

caused more and quicker ECM failures on PCB surfaces because of increasing of the 

aggressiveness and acidity of solution owing to the high solubility. 

The effect of the critical factors concerning the H and CT effects (under continuous 

humidity and using one WOAs as a contamination type) is clearly observable in the 

different experimental results and prediction models. For instance, P and T are illustrated 

as vital factors in CART analysis. As, they have presented the P and T as the preliminary 

splitters in the topmost of the trees, explaining in what way the important nodes could be 

subdivided. Furthermore, the ANOVA table has displayed the contribution percentage of 

P and T on the multivariate regression model in the high impact of these factors on PCB 

failure comparing to the C and V according to the experimental dataset. The P has shown 

a significant effect under humidity conditions on PCB failures (LC and TTF due to ECM). 

The significance of P is because of high component density and electronic miniaturization, 

which causes an increasing the electric field, therefore it is easier for dendrite formation 

during ECM and short circuits. The small pitch distance on the SIR PCB surface could 

create an electrochemical cell and connection very easier owing to water film formation 

between two electrical points. T also is an important factor leading to PCB failures. The T 

under the influence of humidity could effect in various forms, as follow: (i) it could increase 

the AH level in the environment to interact with PCB surface, (ii) It could decrease the 

DRH level for contaminations as well as to increase the solubility, (iii) It could also increase 

the electrochemical kinetics process containing the deposition process for ECM and 

dendrite formation. In addition, the C effect on PCB failures is not as vital as P and T 

effects.  Nevertheless, the influence of C should be taken into account with other factors, 

especially T under H conditions. It is due to once the deliquescence happens, a near-

saturated solution of contamination to the absorbed water layers that will consistently 

remain saturated regardless of the level of contamination unless the T is variant. 

Accordingly, whereas the C on the surface of the PCB is varied, the concentration in the 

water film will not alter considerably; therefore, it should not affect the failure remarkably 

at a constant T and H. Moreover, the V effect in correlation to humidity has shown to have 

a low effect on TTF. It might be because of this point that the extent of the leak current 

could be go through the narrow thickness of the water film on the PCB surface. Thus, 
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increasing of V will not considerably influence the SIR reduction and leak current for 

beginning metal ions dissolution and dendrite formation on PCB surface, unless further 

parameters for instance C, T, or P change. 

For failure prediction purposes, three branches of predictive analytics included; statistical 

analysis, probabilistically approaches, and machine learning algorithms have been used, 

which are considered by different methods, i.e., multivariate regression analysis, ANOVA, 

probability distribution analysis, DT, RF, DNN, SVM, k-NN, and combination of them in 

all of this project. In addition, the correlation between PCB failures (i.e., LC and TTF due 

to ECM responses) is presented. It is useful before ECM happens (in several conditions, it 

takes more time until it happen) to reach and predict TTF. It means, based on the dataset 

presented, a suitable equation could be found to predict TTF according to LC changes. 

General current behavior at three parts (stable part, transient part, as well as unstable part) 

is given a new perception at various conditions, which looks like a sigmoid curve. The 

simulation of the whole leak current trend as well as its parameters is introduced by the 

Logistic function as a mathematical nonlinear growth function to predict future changes. 

This makes it possible to build a model to predict the entire current behavior at different 

conditions by mixture of logistic function and regression equation. Moreover, additional 

achievement of current study is classifying risky conditions based on the average of TTF, 

as well as PoF utilizing Weibull distribution for each condition, which is presented. 
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9 Overall conclusion   

The conclusions are collected and categorized based on a combination of the different sets 

of experimental works and dataset investigations focusing on the branches of predictive 

analytics to predict three responses (PCB failures), and the key research objectives in this 

PhD project. To find all the details of the conclusions achieved from the experimental 

results, the reader is referred to individual paper appended in chapters (5-7). 

Hierarchical failure mechanism on PCB surface, which result in a short circuit with 

interdependencies between the failures processes 

1. Initial leakage current (LC) is the precursor for the electrochemical migration 

(ECM), although it is not a necessary condition that in each case LC leads to ECM.  

2. LC is produced due to the electrochemical process, which also involves metal 

dissolution. Dissolved metals then migrate from the anode to the cathode and 

deposit in the form of the dendrite to create a permanent failure (short circuit).  

3. LC itself could influence the functionality of the electronics depending on its 

sensitivity, and ECM leads to irreversible failure. 

4. The limits of LC value allowed in an actual application depend on the sensitivity of 

the PCB, which can be down to 1 μA level, which is considered as the base level of 

leak current.  

5. In corresponds to the general current behavior at three main states (stable, transient 

and unstable parts), the threshold of approximately 100 μA for the transient state is 

considered for this study, which is distinguished for the ECM and dendrite 

formation.  

6. Normally, the LC value (stable part) larger than the ECM threshold (transient part) 

demonstrate the short circuit resulted from a permanent dendrite in the third state 

(unstable part). 

Investigation of critical factors effect and their interactions to LC and TTF values besides 

failure status responses (based on three parts of the general current behavior) 
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1. For LC, based on the dataset collected from two levels full factorial design under a 

continuous relative humidity and a contamination type, and using ANOVA and 

regression analysis, the pitch distance, temperature, and contamination level had 

significant effect, while the voltage effect is not statistically significant. It could be 

because of the leak current limitation which is passing through the very thin 

thickness of created water layer on the PCB surface. However, voltage with other 

three factors has statistically significant effects on TTF.  

2. Based on the dataset collected from three levels, complete crossed design and using 

the most appropriate selected machine learning algorithm, the humidity, 

temperature, pitch distance, contamination level, contamination type, and voltage 

factor presented significant effects on LC, respectively. However, on failure status 

classification, the two critical factors humidity with around 48%, and contamination 

type with 24% (the relative importance of these two factors together presented more 

than 70% effect on failure status response) have the most significant effect.   

3. According to the dataset collected from three levels, and applied a one-factor-at-a-

time design, and using four prediction models included; multivariate regression 

model, probabilistic distribution regression model, regression tree model, and 

classification tree model; the pitch distance, temperature, contamination level, and 

voltage factor have the highest percentage effects on TTF, respectively. 

Predictive analytics, using combinations of statistical analysis, probabilistic approaches, 

and ML algorithms to predict LC, TTF, failure state, and high risky conditions 

1. LC prediction could be utilized to guesstimate possibility of failure or even TTF if 

the appropriate correlation between LC and failure could be found in various 

usages. 

2. The mathematical simulation of the general current behavior also provided the 

opportunity to build the prediction model of entire leak current at different 

conditions.  

3. Predicting TTF and failure status is beneficial for pro-active design and 

improvement strategies for PCBA manufacturing process to increase reliability and 



Chapter 9 

179 

 

reduce failure risk in exposure to critical conditions. The reasonable prediction also 

provides situations to have more production with no interruption due to corrosion 

failure of electronic equipment.  

4. From all regression prediction models that applied for TTF prediction, the 

multivariate regression analysis based on the number of factor/levels and limitation 

of experimental conditions have presented an efficient model with the highest 

accuracy and lowest error. 

5. Compared to other methods, and based on experimental datasets and outputs 

(responses), machine learning algorithms provide more profound insights with 

remarkable accuracy and ease of interpretation, managing the big data with good 

speed, mapping the nonlinear relationships, performing well with messy data 

(outliers and missing values), and visualizing multiple and complex interactions 

(for tree-based machine leaning algorithms). 

6. From the most common machine learning algorithms for both classification and 

regression analysis in this study, the random forest algorithm has presented the most 

well organized in the training dataset, evaluation by appropriate metrics (validating 

dataset), and high performance in predicting PCB failures as the most suitable 

classifier and regressor model, correspondingly. 
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10 Suggestions for further work  

The present Ph.D. work investigates the PCB failures using experimental works under 

various corrosive conditions combined different controllable factors and different levels. 

By focusing on prediction of the failures using predictive analytics approaches for purposes 

of more robustness and reliable design and reduce risk of electronics failures at different 

applications and climatic conditions. Some further investigations are suggested to be 

applied in continuation of the presented experimental and modelling outcomes where some 

of them are listed as follows: 

 Continuing the experiments by adding more factors/levels e.g., different contamination 

types, distinct surface finished, diverse coting material at various thickness, different 

corrosive gas like H2S, and SO2 at different concentrations, and etc.  

 Design more application oriented testing for example using more complex PCBAs and 

parameters or testing based on climatic conditions under user conditions.  

 Using more predictive models that are not discussed in this project, for example from 

probabilistic approaches such as probabilistic graphical models (PGM) such as 

Bayesian networks etc., if proper data would be available.   

 Data analysis and arrangement of different failure modes, failure mechanisms, failure 

causes, and failure effects of PCBAs for making precise and applicable prediction 

models to reduce their failure risk as much as possible. 

 Failure mode and effect analysis (FMEA) of PCBAs focusing on corrosion factors as it 

is a significant step in the climatic reliability assessment of electronics. In this regard, 

design FMEA (D-FMEA) could be used, which focuses on product design and design-

related deficiencies, with the focus on advancing the design and ensuring product 

operation. Moreover, the process FMEA (P-FMEA) could be used, which has focused 

on and emphasize of the manufacturing or assembly process, which can be modified to 

warrant as if a product is made to design prerequisite in a secure treatment, with at least 

downtime, scrap, and rework. 

  Testing of more complex PCBAs with components etc., and building up more 

complicated models. 

 


